Cargando…

Effect of Anticancer Quinones on Reactive Oxygen Production by Adult Rat Heart Myocytes

This study investigated the effect of anthracycline antibiotics, mitomycin C, and menadione on oxygen consumption and hydrogen peroxide production by intact, beating, rat heart myocytes. Doxorubicin produced a dose-dependent increase in the rate of cyanide-resistant respiration by beating myocytes....

Descripción completa

Detalles Bibliográficos
Autor principal: Doroshow, James H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599408/
https://www.ncbi.nlm.nih.gov/pubmed/33144915
http://dx.doi.org/10.1155/2020/8877100
Descripción
Sumario:This study investigated the effect of anthracycline antibiotics, mitomycin C, and menadione on oxygen consumption and hydrogen peroxide production by intact, beating, rat heart myocytes. Doxorubicin produced a dose-dependent increase in the rate of cyanide-resistant respiration by beating myocytes. The anthracycline analogs 4-demethoxydaunorubicin, 4′-epidoxorubicin, 4′-deoxydoxorubicin, and menogaril, as well as the anticancer quinones mitomycin C and menadione, also significantly increased oxygen consumption by cardiac myocytes. However, 5-iminodaunorubicin (which has a substituted quinone group) and mitoxantrone (which is not easily reduced by flavin dehydrogenases) had no effect on cardiac respiration. Both catalase (43%) and acetylated cytochrome c (19%) significantly decreased oxygen consumption that had been stimulated by doxorubicin; furthermore, extracellular hydrogen peroxide production was increased from undetectable control levels to 1.30 ± 0.02 nmol/min/10(7) myocytes (n = 4, P < 0.01) in the presence of 400 μM doxorubicin. These experiments suggest that the anthracycline antibiotics and other anticancer quinones stimulate cardiac oxygen radical production in intact heart myocytes; such a free radical cascade could contribute to the cardiac toxicity of these drugs.