Cargando…

Enlisting a Traditional Chinese Medicine to tune the gelation kinetics of a bioactive tissue adhesive for fast hemostasis or minimally invasive therapy

Gelation kinetics is important in tailoring chemically crosslinked hydrogel-based injectable adhesives for different applications. However, the regulation of gelation rate is usually limited to varying the gel precursor and/or crosslinker concentration, which cannot reach a fine level and inevitably...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Haoqi, Jin, Dawei, Sun, Junjie, Song, Jialin, Lu, Yao, Yin, Meng, Chen, Xin, Qu, Xue, Liu, Changsheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599438/
https://www.ncbi.nlm.nih.gov/pubmed/33163698
http://dx.doi.org/10.1016/j.bioactmat.2020.10.011
Descripción
Sumario:Gelation kinetics is important in tailoring chemically crosslinked hydrogel-based injectable adhesives for different applications. However, the regulation of gelation rate is usually limited to varying the gel precursor and/or crosslinker concentration, which cannot reach a fine level and inevitably alters the physical properties of hydrogels. Amidation reactions are widely used to synthesize hydrogel adhesives. In this work, we propose a traditional Chinese medicine (Borax)-input strategy to tune the gelation rate of amidation reaction triggered systems. Borax provides an initial basic buffer environment to promote the deprotonation process of amino groups and accelerate this reaction. By using a tissue adhesive model PEG-lysozyme (PEG-LZM), the gelation time can be modulated from seconds to minutes with varying Borax concentrations, while the physical properties remain constant. Moreover, the antibacterial ability can be improved due to the bioactivity of Borax. The hydrogel precursors can be regulated to solidify instantly to close the bleeding wound at emergency. Meanwhile, they can also be customized to match the flowing time in the catheter, thereby facilitating minimally invasive tissue sealing. Because this method is easily operated, we envision Borax adjusted amidation-type hydrogel has a promising prospect in clinical application.