Cargando…

Effects of Reinforcement Ratios and Sintering Temperatures on the Mechanical Properties of Titanium Nitride/Nickel Composites

In this study, powder metallurgy was used to fabricate titanium nitride/nickel metal-matrix composites. First, titanium and nickel powders with weight ratios of 20:80, 50:50 and 80:20 were dry mixed for 24 h. After cold isostatic pressing, the green compacts were soaked in a water-based hot forging...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yi-Cheng, Ou, Shih-Fu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599506/
https://www.ncbi.nlm.nih.gov/pubmed/33050296
http://dx.doi.org/10.3390/ma13204473
_version_ 1783602891364237312
author Chen, Yi-Cheng
Ou, Shih-Fu
author_facet Chen, Yi-Cheng
Ou, Shih-Fu
author_sort Chen, Yi-Cheng
collection PubMed
description In this study, powder metallurgy was used to fabricate titanium nitride/nickel metal-matrix composites. First, titanium and nickel powders with weight ratios of 20:80, 50:50 and 80:20 were dry mixed for 24 h. After cold isostatic pressing, the green compacts were soaked in a water-based hot forging lubricant and sintered at 850, 950 and 1050 °C for 1.5 h in an air atmosphere. The effects of the amounts of titanium powder and the sintering temperatures on the mechanical properties (hardness, wear resistance and compressive strength) of the composites were investigated. The results indicated that titanium gradually transformed into titanium nitride near the surface after sintering due to the carbothermal reduction reaction; this transformation was observed to significantly increase the hardness. In addition, an oxygen-rich film was observed to form between the titanium nitride particles and the nickel matrix. An optimum sintering temperature of 950 °C provides the composites (titanium–nickel weight ratios of 20:80) the best mechanical properties (wear resistance and compressive strength) among other groups. Furthermore, increasing the titanium content to 80% in the composite increased the hardness; however, the wear resistance and compressive strength decreased.
format Online
Article
Text
id pubmed-7599506
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-75995062020-11-01 Effects of Reinforcement Ratios and Sintering Temperatures on the Mechanical Properties of Titanium Nitride/Nickel Composites Chen, Yi-Cheng Ou, Shih-Fu Materials (Basel) Article In this study, powder metallurgy was used to fabricate titanium nitride/nickel metal-matrix composites. First, titanium and nickel powders with weight ratios of 20:80, 50:50 and 80:20 were dry mixed for 24 h. After cold isostatic pressing, the green compacts were soaked in a water-based hot forging lubricant and sintered at 850, 950 and 1050 °C for 1.5 h in an air atmosphere. The effects of the amounts of titanium powder and the sintering temperatures on the mechanical properties (hardness, wear resistance and compressive strength) of the composites were investigated. The results indicated that titanium gradually transformed into titanium nitride near the surface after sintering due to the carbothermal reduction reaction; this transformation was observed to significantly increase the hardness. In addition, an oxygen-rich film was observed to form between the titanium nitride particles and the nickel matrix. An optimum sintering temperature of 950 °C provides the composites (titanium–nickel weight ratios of 20:80) the best mechanical properties (wear resistance and compressive strength) among other groups. Furthermore, increasing the titanium content to 80% in the composite increased the hardness; however, the wear resistance and compressive strength decreased. MDPI 2020-10-09 /pmc/articles/PMC7599506/ /pubmed/33050296 http://dx.doi.org/10.3390/ma13204473 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chen, Yi-Cheng
Ou, Shih-Fu
Effects of Reinforcement Ratios and Sintering Temperatures on the Mechanical Properties of Titanium Nitride/Nickel Composites
title Effects of Reinforcement Ratios and Sintering Temperatures on the Mechanical Properties of Titanium Nitride/Nickel Composites
title_full Effects of Reinforcement Ratios and Sintering Temperatures on the Mechanical Properties of Titanium Nitride/Nickel Composites
title_fullStr Effects of Reinforcement Ratios and Sintering Temperatures on the Mechanical Properties of Titanium Nitride/Nickel Composites
title_full_unstemmed Effects of Reinforcement Ratios and Sintering Temperatures on the Mechanical Properties of Titanium Nitride/Nickel Composites
title_short Effects of Reinforcement Ratios and Sintering Temperatures on the Mechanical Properties of Titanium Nitride/Nickel Composites
title_sort effects of reinforcement ratios and sintering temperatures on the mechanical properties of titanium nitride/nickel composites
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599506/
https://www.ncbi.nlm.nih.gov/pubmed/33050296
http://dx.doi.org/10.3390/ma13204473
work_keys_str_mv AT chenyicheng effectsofreinforcementratiosandsinteringtemperaturesonthemechanicalpropertiesoftitaniumnitridenickelcomposites
AT oushihfu effectsofreinforcementratiosandsinteringtemperaturesonthemechanicalpropertiesoftitaniumnitridenickelcomposites