Cargando…
The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing systems have enabled molecular geneticists to manipulate prokaryotic and eukaryotic genomes with greater efficiency and precision. CRISPR/Cas provides adaptive immunity in bacterial cells by degrading invading viral...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599521/ https://www.ncbi.nlm.nih.gov/pubmed/33008045 http://dx.doi.org/10.3390/genes11101160 |
_version_ | 1783602895242919936 |
---|---|
author | Hewes, Amanda M. Sansbury, Brett M. Kmiec, Eric B. |
author_facet | Hewes, Amanda M. Sansbury, Brett M. Kmiec, Eric B. |
author_sort | Hewes, Amanda M. |
collection | PubMed |
description | Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing systems have enabled molecular geneticists to manipulate prokaryotic and eukaryotic genomes with greater efficiency and precision. CRISPR/Cas provides adaptive immunity in bacterial cells by degrading invading viral genomes. By democratizing this activity into human cells, it is possible to knock out specific genes to disable their function and repair errors. The latter of these activities requires the participation of a single-stranded donor DNA template that provides the genetic information to execute correction in a process referred to as homology directed repair (HDR). Here, we utilized an established cell-free extract system to determine the influence that the donor DNA template length has on the diversity of products from CRISPR-directed gene editing. This model system enables us to view all outcomes of this reaction and reveals that donor template length can influence the efficiency of the reaction and the categories of error-prone products that accompany it. A careful measurement of the products revealed a category of error-prone events that contained the corrected template along with insertions and deletions (indels). Our data provides foundational information for those whose aim is to translate CRISPR/Cas from bench to bedside. |
format | Online Article Text |
id | pubmed-7599521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75995212020-11-01 The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template Hewes, Amanda M. Sansbury, Brett M. Kmiec, Eric B. Genes (Basel) Article Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas gene editing systems have enabled molecular geneticists to manipulate prokaryotic and eukaryotic genomes with greater efficiency and precision. CRISPR/Cas provides adaptive immunity in bacterial cells by degrading invading viral genomes. By democratizing this activity into human cells, it is possible to knock out specific genes to disable their function and repair errors. The latter of these activities requires the participation of a single-stranded donor DNA template that provides the genetic information to execute correction in a process referred to as homology directed repair (HDR). Here, we utilized an established cell-free extract system to determine the influence that the donor DNA template length has on the diversity of products from CRISPR-directed gene editing. This model system enables us to view all outcomes of this reaction and reveals that donor template length can influence the efficiency of the reaction and the categories of error-prone products that accompany it. A careful measurement of the products revealed a category of error-prone events that contained the corrected template along with insertions and deletions (indels). Our data provides foundational information for those whose aim is to translate CRISPR/Cas from bench to bedside. MDPI 2020-09-30 /pmc/articles/PMC7599521/ /pubmed/33008045 http://dx.doi.org/10.3390/genes11101160 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hewes, Amanda M. Sansbury, Brett M. Kmiec, Eric B. The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template |
title | The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template |
title_full | The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template |
title_fullStr | The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template |
title_full_unstemmed | The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template |
title_short | The Diversity of Genetic Outcomes from CRISPR/Cas Gene Editing is Regulated by the Length of the Symmetrical Donor DNA Template |
title_sort | diversity of genetic outcomes from crispr/cas gene editing is regulated by the length of the symmetrical donor dna template |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599521/ https://www.ncbi.nlm.nih.gov/pubmed/33008045 http://dx.doi.org/10.3390/genes11101160 |
work_keys_str_mv | AT hewesamandam thediversityofgeneticoutcomesfromcrisprcasgeneeditingisregulatedbythelengthofthesymmetricaldonordnatemplate AT sansburybrettm thediversityofgeneticoutcomesfromcrisprcasgeneeditingisregulatedbythelengthofthesymmetricaldonordnatemplate AT kmiecericb thediversityofgeneticoutcomesfromcrisprcasgeneeditingisregulatedbythelengthofthesymmetricaldonordnatemplate AT hewesamandam diversityofgeneticoutcomesfromcrisprcasgeneeditingisregulatedbythelengthofthesymmetricaldonordnatemplate AT sansburybrettm diversityofgeneticoutcomesfromcrisprcasgeneeditingisregulatedbythelengthofthesymmetricaldonordnatemplate AT kmiecericb diversityofgeneticoutcomesfromcrisprcasgeneeditingisregulatedbythelengthofthesymmetricaldonordnatemplate |