Cargando…

Plasmonic Optical Biosensors for Detecting C-Reactive Protein: A Review

C-reactive protein (CRP), a potent acute-phase reactant that increases rapidly in response to inflammation, tissue damage or infections, is also considered an indicator of the risk of cardiovascular diseases and neurological disorders. Recent advances in nanofabrication and nanophotonic technologies...

Descripción completa

Detalles Bibliográficos
Autores principales: Seok, Joo Seon, Ju, Heongkyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599671/
https://www.ncbi.nlm.nih.gov/pubmed/32992442
http://dx.doi.org/10.3390/mi11100895
Descripción
Sumario:C-reactive protein (CRP), a potent acute-phase reactant that increases rapidly in response to inflammation, tissue damage or infections, is also considered an indicator of the risk of cardiovascular diseases and neurological disorders. Recent advances in nanofabrication and nanophotonic technologies have prompted the optical plasmonic phenomena to be tailored for specific detection of human serum CRP into label-free devices. We review the CRP-specific detection platforms with high sensitivity, which feature the thin metal films for surface plasmon resonance, nano-enhancers of zero dimensional nanostructures, and metal nanoparticles for localized surface plasmon resonance. The protocols used for various types of assay reported in literature are also outlines with surface chemical pretreatment required for specific detection of CRPs on a plasmonic surface. Properties including sensitivity and detection range are described for each sensor device reviewed, while challenges faced by plasmonic CRP sensors are discussed in the conclusion, with future directions towards which research efforts need to be made.