Cargando…

Effects of the Substrate on Interfacial Polymerization: Tuning the Hydrophobicity via Polyelectrolyte Deposition

Interfacial polymerization (IP) has been the key method for the fabrication of the thin film composite (TFC) membranes that are extensively employed in reverse osmosis (RO) and forward osmosis (FO). However, the role of the substrate surface hydrophilicity in the formation of the IP-film remains a c...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Xin, Liu, Ge, Li, Weiyi, Wang, Qinyu, Deng, Baolin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599731/
https://www.ncbi.nlm.nih.gov/pubmed/32993162
http://dx.doi.org/10.3390/membranes10100259
Descripción
Sumario:Interfacial polymerization (IP) has been the key method for the fabrication of the thin film composite (TFC) membranes that are extensively employed in reverse osmosis (RO) and forward osmosis (FO). However, the role of the substrate surface hydrophilicity in the formation of the IP-film remains a controversial issue to be further addressed. This study characterized the IP films formed on a series of polyacrylonitrile (PAN) substrates whose hydrophilicities (from ~38 to ~93 degrees) were varied via different approaches, including the alkaline treatment and the deposition of various polycations. It was revealed that delamination could occur when the IP film was formed on a relatively hydrophilic surface; the integrity of the TFC membranes was substantially improved, owing to the modification of the polyelectrolyte deposition. On the other hand, the characterization indicated that the TFC membrane could have an enhanced efficiency (with a factor of ~2) when the substrate was relatively hydrophilic. It was established that the polyelectrolyte deposition could be exploited to effectively tune the substrate surface hydrophobicity, thereby providing more degrees of freedom for the optimization of the TFC membranes fabrication.