Cargando…
Detection of EGFR Mutations Using Bronchial Washing-Derived Extracellular Vesicles in Patients with Non-Small-Cell Lung Carcinoma
SIMPLE SUMMARY: Considering the spatiotemporal heterogeneity, more frequent monitoring of the disease progress using less-invasive liquid biopsy technologies is highly desired. Here, we demonstrate that epidermal growth factor receptor (EGFR) mutations could be readily detected from minimally invasi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599768/ https://www.ncbi.nlm.nih.gov/pubmed/33007940 http://dx.doi.org/10.3390/cancers12102822 |
Sumario: | SIMPLE SUMMARY: Considering the spatiotemporal heterogeneity, more frequent monitoring of the disease progress using less-invasive liquid biopsy technologies is highly desired. Here, we demonstrate that epidermal growth factor receptor (EGFR) mutations could be readily detected from minimally invasive bronchial washing (BW)-derived EVs with good accuracy. The acquisition of T790M resistance mutation was detected earlier in BW-derived EVs than in plasma or tissue samples. The longitudinal analysis of BW-derived EVs showed excellent correlation with the disease progression measured by CT images. We demonstrate the clinical potential of BW-derived EVs as a liquid-biopsy sample for prognosis and precision medicine in patients with lung cancer. ABSTRACT: The detection of epidermal growth factor receptor (EGFR) mutation, based on tissue biopsy samples, provides a valuable guideline for the prognosis and precision medicine in patients with lung cancer. In this study, we aimed to examine minimally invasive bronchial washing (BW)-derived extracellular vesicles (EVs) for EGFR mutation analysis in patients with lung cancer. A lab-on-a-disc equipped with a filter with 20-nm pore diameter, Exo-Disc, was used to enrich EVs in BW samples. The overall detection sensitivity of EGFR mutations in 55 BW-derived samples was 89.7% and 31.0% for EV-derived DNA (EV-DNA) and EV-excluded cell free-DNA (EV-X-cfDNA), respectively, with 100% specificity. The detection rate of T790M in 13 matched samples was 61.5%, 10.0%, and 30.8% from BW-derived EV-DNA, plasma-derived cfDNA, and tissue samples, respectively. The acquisition of T790M resistance mutation was detected earlier in BW-derived EVs than plasma or tissue samples. The longitudinal analysis of BW-derived EVs showed excellent correlation with the disease progression measured by CT images. The EGFR mutations can be readily detected in BW-derived EVs, which demonstrates their clinical potential as a liquid-biopsy sample that may aid precise management, including assessment of the treatment response and drug resistance in patients with lung cancer. |
---|