Cargando…

Recession of Environmental Barrier Coatings under High-Temperature Water Vapour Conditions: A Theoretical Model

Rare-earth disilicates are the major material used on the top layer of environmental barrier coating (EBC) systems. Although rare-earth disilicates are highly resistant to water vapour, corrosion due to water vapour at high temperature is still one of the main reasons of failure of EBC systems. In t...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Peng, Ye, Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599859/
https://www.ncbi.nlm.nih.gov/pubmed/33050500
http://dx.doi.org/10.3390/ma13204494
Descripción
Sumario:Rare-earth disilicates are the major material used on the top layer of environmental barrier coating (EBC) systems. Although rare-earth disilicates are highly resistant to water vapour, corrosion due to water vapour at high temperature is still one of the main reasons of failure of EBC systems. In this study, a corrosion model of ytterbium disilicates in water vapour at high temperature was derived, based on the gas diffusion theory. Using this theoretical model, we studied the evolution rule of the corroded area on the top layer of the EBC under gas flow at high temperature. The influence of the various parameters of the external gas on the corrosion process and the corrosion kinetics curve were also discussed. The theoretical model shows that the increase in gas temperature, gas flow velocity, water partial pressure, and total gas pressure accelerate coating corrosion. Among these factors, the influence of total gas pressure on the corrosion process is relatively weak, and the effect of the continuous increase of the gas velocity on the corrosion process is limited. The shape of the corrosion kinetics curve is either a straight or parabolic, and it was determined by a combination of external gas parameters.