Cargando…
Prediction of Antidepressant Treatment Response and Remission Using an Ensemble Machine Learning Framework
In the wake of recent advances in machine learning research, the study of pharmacogenomics using predictive algorithms serves as a new paradigmatic application. In this work, our goal was to explore an ensemble machine learning approach which aims to predict probable antidepressant treatment respons...
Autores principales: | Lin, Eugene, Kuo, Po-Hsiu, Liu, Yu-Li, Yu, Younger W.-Y., Yang, Albert C., Tsai, Shih-Jen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7599952/ https://www.ncbi.nlm.nih.gov/pubmed/33065962 http://dx.doi.org/10.3390/ph13100305 |
Ejemplares similares
-
A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers
por: Lin, Eugene, et al.
Publicado: (2018) -
Gene-Based Association Analysis Suggests Association of HTR2A With Antidepressant Treatment Response in Depressed Patients
por: Kao, Chung-Feng, et al.
Publicado: (2020) -
Gene-based analysis of genes related to neurotrophic pathway suggests association of BDNF and VEGFA with antidepressant treatment-response in depressed patients
por: Kao, Chung-Feng, et al.
Publicado: (2018) -
Prediction of Probable Major Depressive Disorder in the Taiwan Biobank: An Integrated Machine Learning and Genome-Wide Analysis Approach
por: Lin, Eugene, et al.
Publicado: (2021) -
Improving Individual Brain Age Prediction Using an Ensemble Deep Learning Framework
por: Kuo, Chen-Yuan, et al.
Publicado: (2021)