Cargando…

Chronic High Glyphosate Exposure Delays Individual Worker Bee (Apis mellifera L.) Development under Field Conditions

SIMPLE SUMMARY: Glyphosate-based herbicides (GBH) can be found worldwide throughout conventional agroecosystems due to their unique and effective mode of action. Their use is generally not considered harmful to honey bees, and, consequently, foragers may encounter food sources that are potentially c...

Descripción completa

Detalles Bibliográficos
Autores principales: Odemer, Richard, Alkassab, Abdulrahim T., Bischoff, Gabriela, Frommberger, Malte, Wernecke, Anna, Wirtz, Ina P., Pistorius, Jens, Odemer, Franziska
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600025/
https://www.ncbi.nlm.nih.gov/pubmed/32992639
http://dx.doi.org/10.3390/insects11100664
_version_ 1783603027219841024
author Odemer, Richard
Alkassab, Abdulrahim T.
Bischoff, Gabriela
Frommberger, Malte
Wernecke, Anna
Wirtz, Ina P.
Pistorius, Jens
Odemer, Franziska
author_facet Odemer, Richard
Alkassab, Abdulrahim T.
Bischoff, Gabriela
Frommberger, Malte
Wernecke, Anna
Wirtz, Ina P.
Pistorius, Jens
Odemer, Franziska
author_sort Odemer, Richard
collection PubMed
description SIMPLE SUMMARY: Glyphosate-based herbicides (GBH) can be found worldwide throughout conventional agroecosystems due to their unique and effective mode of action. Their use is generally not considered harmful to honey bees, and, consequently, foragers may encounter food sources that are potentially contaminated with GBH residues. However, recent studies found GBH to cause sublethal effects in bees, and therefore give rise to concern. While most related research has addressed such effects under laboratory conditions, field-realistic approaches under free-flying conditions are scarce. Here, we explore if GBH influences several important performance parameters at the colony level using standard and modified regulatory testing methods. Colony conditions (i.e., colony weight gain, individual worker bee survival, and overwintering) were not affected when subjected to chronic GBH exposure in a realistic range (high and low). In line with previous laboratory results, the high range of treatments revealed a delayed brood development of workers and reduced hatching weight of adults when compared with the control group. However, we concluded that more drastic effects on honey bee health did not seem to appear, as a broad range of performance parameters remained completely unaffected. In future research, the underlying mechanisms of the developmental delay that was confirmed here should be carefully investigated. ABSTRACT: The ongoing debate about glyphosate-based herbicides (GBH) and their implications for beneficial arthropods gives rise to controversy. This research was carried out to cover possible sublethal GBH effects on the brood and colony development, adult survival, and overwintering success of honey bees (Apis mellifera L.) under field conditions. Residues in bee relevant matrices, such as nectar, pollen, and plants, were additionally measured. To address these questions, we adopted four independent study approaches. For brood effects and survival, we orally exposed mini-hives housed in the “Kieler mating-nuc” system to sublethal concentrations of 4.8 mg glyphosate/kg (T1, low) and 137.6 mg glyphosate/kg (T2, high) over a period of one brood cycle (21 days). Brood development and colony conditions were assessed after a modified OECD method (No. 75). For adult survival, we weighed and labeled freshly emerged workers from control and exposed colonies and introduced them into non-contaminated mini-hives to monitor their life span for 25 consecutive days. The results from these experiments showed a trivial effect of GBH on colony conditions and the survival of individual workers, even though the hatching weight was reduced in T2. The brood termination rate (BTR) in the T2 treatment, however, was more than doubled (49.84%) when compared to the control (22.11%) or T1 (20.69%). This was surprising as T2 colonies gained similar weight and similar numbers of bees per colony compared to the control, indicating an equal performance. Obviously, the brood development in T2 was not “terminated” as expected by the OECD method terminology, but rather “slowed down” for an unknown period of time. In light of these findings, we suggest that chronic high GBH exposure is capable of significantly delaying worker brood development, while no further detrimental effects seem to appear at the colony level. Against this background, we discuss additional results and possible consequences of GBH for honey bee health.
format Online
Article
Text
id pubmed-7600025
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76000252020-11-01 Chronic High Glyphosate Exposure Delays Individual Worker Bee (Apis mellifera L.) Development under Field Conditions Odemer, Richard Alkassab, Abdulrahim T. Bischoff, Gabriela Frommberger, Malte Wernecke, Anna Wirtz, Ina P. Pistorius, Jens Odemer, Franziska Insects Article SIMPLE SUMMARY: Glyphosate-based herbicides (GBH) can be found worldwide throughout conventional agroecosystems due to their unique and effective mode of action. Their use is generally not considered harmful to honey bees, and, consequently, foragers may encounter food sources that are potentially contaminated with GBH residues. However, recent studies found GBH to cause sublethal effects in bees, and therefore give rise to concern. While most related research has addressed such effects under laboratory conditions, field-realistic approaches under free-flying conditions are scarce. Here, we explore if GBH influences several important performance parameters at the colony level using standard and modified regulatory testing methods. Colony conditions (i.e., colony weight gain, individual worker bee survival, and overwintering) were not affected when subjected to chronic GBH exposure in a realistic range (high and low). In line with previous laboratory results, the high range of treatments revealed a delayed brood development of workers and reduced hatching weight of adults when compared with the control group. However, we concluded that more drastic effects on honey bee health did not seem to appear, as a broad range of performance parameters remained completely unaffected. In future research, the underlying mechanisms of the developmental delay that was confirmed here should be carefully investigated. ABSTRACT: The ongoing debate about glyphosate-based herbicides (GBH) and their implications for beneficial arthropods gives rise to controversy. This research was carried out to cover possible sublethal GBH effects on the brood and colony development, adult survival, and overwintering success of honey bees (Apis mellifera L.) under field conditions. Residues in bee relevant matrices, such as nectar, pollen, and plants, were additionally measured. To address these questions, we adopted four independent study approaches. For brood effects and survival, we orally exposed mini-hives housed in the “Kieler mating-nuc” system to sublethal concentrations of 4.8 mg glyphosate/kg (T1, low) and 137.6 mg glyphosate/kg (T2, high) over a period of one brood cycle (21 days). Brood development and colony conditions were assessed after a modified OECD method (No. 75). For adult survival, we weighed and labeled freshly emerged workers from control and exposed colonies and introduced them into non-contaminated mini-hives to monitor their life span for 25 consecutive days. The results from these experiments showed a trivial effect of GBH on colony conditions and the survival of individual workers, even though the hatching weight was reduced in T2. The brood termination rate (BTR) in the T2 treatment, however, was more than doubled (49.84%) when compared to the control (22.11%) or T1 (20.69%). This was surprising as T2 colonies gained similar weight and similar numbers of bees per colony compared to the control, indicating an equal performance. Obviously, the brood development in T2 was not “terminated” as expected by the OECD method terminology, but rather “slowed down” for an unknown period of time. In light of these findings, we suggest that chronic high GBH exposure is capable of significantly delaying worker brood development, while no further detrimental effects seem to appear at the colony level. Against this background, we discuss additional results and possible consequences of GBH for honey bee health. MDPI 2020-09-27 /pmc/articles/PMC7600025/ /pubmed/32992639 http://dx.doi.org/10.3390/insects11100664 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Odemer, Richard
Alkassab, Abdulrahim T.
Bischoff, Gabriela
Frommberger, Malte
Wernecke, Anna
Wirtz, Ina P.
Pistorius, Jens
Odemer, Franziska
Chronic High Glyphosate Exposure Delays Individual Worker Bee (Apis mellifera L.) Development under Field Conditions
title Chronic High Glyphosate Exposure Delays Individual Worker Bee (Apis mellifera L.) Development under Field Conditions
title_full Chronic High Glyphosate Exposure Delays Individual Worker Bee (Apis mellifera L.) Development under Field Conditions
title_fullStr Chronic High Glyphosate Exposure Delays Individual Worker Bee (Apis mellifera L.) Development under Field Conditions
title_full_unstemmed Chronic High Glyphosate Exposure Delays Individual Worker Bee (Apis mellifera L.) Development under Field Conditions
title_short Chronic High Glyphosate Exposure Delays Individual Worker Bee (Apis mellifera L.) Development under Field Conditions
title_sort chronic high glyphosate exposure delays individual worker bee (apis mellifera l.) development under field conditions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600025/
https://www.ncbi.nlm.nih.gov/pubmed/32992639
http://dx.doi.org/10.3390/insects11100664
work_keys_str_mv AT odemerrichard chronichighglyphosateexposuredelaysindividualworkerbeeapismelliferaldevelopmentunderfieldconditions
AT alkassababdulrahimt chronichighglyphosateexposuredelaysindividualworkerbeeapismelliferaldevelopmentunderfieldconditions
AT bischoffgabriela chronichighglyphosateexposuredelaysindividualworkerbeeapismelliferaldevelopmentunderfieldconditions
AT frommbergermalte chronichighglyphosateexposuredelaysindividualworkerbeeapismelliferaldevelopmentunderfieldconditions
AT werneckeanna chronichighglyphosateexposuredelaysindividualworkerbeeapismelliferaldevelopmentunderfieldconditions
AT wirtzinap chronichighglyphosateexposuredelaysindividualworkerbeeapismelliferaldevelopmentunderfieldconditions
AT pistoriusjens chronichighglyphosateexposuredelaysindividualworkerbeeapismelliferaldevelopmentunderfieldconditions
AT odemerfranziska chronichighglyphosateexposuredelaysindividualworkerbeeapismelliferaldevelopmentunderfieldconditions