Cargando…
Deep Learning With Electronic Health Records for Short-Term Fracture Risk Identification: Crystal Bone Algorithm Development and Validation
BACKGROUND: Fractures as a result of osteoporosis and low bone mass are common and give rise to significant clinical, personal, and economic burden. Even after a fracture occurs, high fracture risk remains widely underdiagnosed and undertreated. Common fracture risk assessment tools utilize a subset...
Autores principales: | Almog, Yasmeen Adar, Rai, Angshu, Zhang, Patrick, Moulaison, Amanda, Powell, Ross, Mishra, Anirban, Weinberg, Kerry, Hamilton, Celeste, Oates, Mary, McCloskey, Eugene, Cummings, Steven R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600029/ https://www.ncbi.nlm.nih.gov/pubmed/32956069 http://dx.doi.org/10.2196/22550 |
Ejemplares similares
-
OR13-07 Crystal Bone: Personalized, Short-Term Fracture Risk Prediction with Natural Language Processing Methods
por: Almog, Yasmeen, et al.
Publicado: (2020) -
The Development and Validation of Simplified Machine Learning Algorithms to Predict Prognosis of Hospitalized Patients With COVID-19: Multicenter, Retrospective Study
por: He, Fang, et al.
Publicado: (2022) -
Use of an electronic medical record dashboard to identify gaps in osteoporosis care
por: Papaioannou, A., et al.
Publicado: (2021) -
El periodismo industrial
por: McCloskey, James
Publicado: (1960) -
Estimating the future clinical and economic benefits of improving osteoporosis diagnosis and treatment among postmenopausal women across eight European countries
por: Yeh, Eric J., et al.
Publicado: (2023)