Cargando…
Micromechanical Model and Thermal Properties of Dry-Friction Hybrid Polymer Composite Clutch Facings
Fiber-reinforced hybrid composites are the most commonly used dry-friction materials in the automotive industry. On the other hand, the great variety of components utilized these days in such material systems often requires identification investigations for a complex characterization. The developmen...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600126/ https://www.ncbi.nlm.nih.gov/pubmed/33053686 http://dx.doi.org/10.3390/ma13204508 |
_version_ | 1783603060020346880 |
---|---|
author | Biczó, Roland Kalácska, Gábor Mankovits, Tamás |
author_facet | Biczó, Roland Kalácska, Gábor Mankovits, Tamás |
author_sort | Biczó, Roland |
collection | PubMed |
description | Fiber-reinforced hybrid composites are the most commonly used dry-friction materials in the automotive industry. On the other hand, the great variety of components utilized these days in such material systems often requires identification investigations for a complex characterization. The development history of clutch materials was reviewed, highlighting and understanding the milestones and efforts leading to the creation of these materials. Investigations were performed to determine mechanical stiffness matrix parameters and thermal properties of a woven fiber yarn (glass fiber with aromatic polyamide, copper, and poly-acrylic-nitrile (PAN) reinforced friction material, revealing and solving challenges faced during identification efforts. This study grants an effective reference and a novel guidance for material identification methods for similar complex materials, and the results provide input parameters for thermomechanical simulation contact model development, which will cover friction material lifetime effects on dry clutch tribology in a future study. |
format | Online Article Text |
id | pubmed-7600126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76001262020-11-01 Micromechanical Model and Thermal Properties of Dry-Friction Hybrid Polymer Composite Clutch Facings Biczó, Roland Kalácska, Gábor Mankovits, Tamás Materials (Basel) Article Fiber-reinforced hybrid composites are the most commonly used dry-friction materials in the automotive industry. On the other hand, the great variety of components utilized these days in such material systems often requires identification investigations for a complex characterization. The development history of clutch materials was reviewed, highlighting and understanding the milestones and efforts leading to the creation of these materials. Investigations were performed to determine mechanical stiffness matrix parameters and thermal properties of a woven fiber yarn (glass fiber with aromatic polyamide, copper, and poly-acrylic-nitrile (PAN) reinforced friction material, revealing and solving challenges faced during identification efforts. This study grants an effective reference and a novel guidance for material identification methods for similar complex materials, and the results provide input parameters for thermomechanical simulation contact model development, which will cover friction material lifetime effects on dry clutch tribology in a future study. MDPI 2020-10-12 /pmc/articles/PMC7600126/ /pubmed/33053686 http://dx.doi.org/10.3390/ma13204508 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Biczó, Roland Kalácska, Gábor Mankovits, Tamás Micromechanical Model and Thermal Properties of Dry-Friction Hybrid Polymer Composite Clutch Facings |
title | Micromechanical Model and Thermal Properties of Dry-Friction Hybrid Polymer Composite Clutch Facings |
title_full | Micromechanical Model and Thermal Properties of Dry-Friction Hybrid Polymer Composite Clutch Facings |
title_fullStr | Micromechanical Model and Thermal Properties of Dry-Friction Hybrid Polymer Composite Clutch Facings |
title_full_unstemmed | Micromechanical Model and Thermal Properties of Dry-Friction Hybrid Polymer Composite Clutch Facings |
title_short | Micromechanical Model and Thermal Properties of Dry-Friction Hybrid Polymer Composite Clutch Facings |
title_sort | micromechanical model and thermal properties of dry-friction hybrid polymer composite clutch facings |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600126/ https://www.ncbi.nlm.nih.gov/pubmed/33053686 http://dx.doi.org/10.3390/ma13204508 |
work_keys_str_mv | AT biczoroland micromechanicalmodelandthermalpropertiesofdryfrictionhybridpolymercompositeclutchfacings AT kalacskagabor micromechanicalmodelandthermalpropertiesofdryfrictionhybridpolymercompositeclutchfacings AT mankovitstamas micromechanicalmodelandthermalpropertiesofdryfrictionhybridpolymercompositeclutchfacings |