Cargando…
Automated Segmentation and Severity Analysis of Subdural Hematoma for Patients with Traumatic Brain Injuries
Detection and severity assessment of subdural hematoma is a major step in the evaluation of traumatic brain injuries. This is a retrospective study of 110 computed tomography (CT) scans from patients admitted to the Michigan Medicine Neurological Intensive Care Unit or Emergency Department. A machin...
Autores principales: | Farzaneh, Negar, Williamson, Craig A., Jiang, Cheng, Srinivasan, Ashok, Bapuraj, Jayapalli R., Gryak, Jonathan, Najarian, Kayvan, Soroushmehr, S. M. Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600198/ https://www.ncbi.nlm.nih.gov/pubmed/33007929 http://dx.doi.org/10.3390/diagnostics10100773 |
Ejemplares similares
-
A deep learning framework for automated detection and quantitative assessment of liver trauma
por: Farzaneh, Negar, et al.
Publicado: (2022) -
A hierarchical expert-guided machine learning framework for clinical decision support systems: an application to traumatic brain injury prognostication
por: Farzaneh, Negar, et al.
Publicado: (2021) -
Vessel segmentation for X-ray coronary angiography using ensemble methods with deep learning and filter-based features
por: Gao, Zijun, et al.
Publicado: (2022) -
Transforming big data into computational models for personalized medicine and health care
por: Reza Soroushmehr, S. M., et al.
Publicado: (2016) -
An interpretable neural network for outcome prediction in traumatic brain injury
por: Minoccheri, Cristian, et al.
Publicado: (2022)