Cargando…

Quasi-Irreversible Inhibition of CYP2D6 by Berberine

In our previous study, Hwang-Ryun-Hae-Dok-Tang, which contains berberine (BBR) as a main active ingredient, inhibited cytochrome P450 (CYP) 2D6 in a quasi-irreversible manner. However, no information is available on the detailed mechanism of BBR-induced CYP2D6 inhibition. Thus, the present study aim...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Ha Gyeong, Lee, Han Sol, Jeon, Jang Su, Choi, Young Jae, Choi, Yeon Jung, Yoo, So-Yeol, Kim, Eun-yeong, Lee, Kiho, Park, InWha, Na, MinKyun, Park, Han-Jin, Cho, Seung-Woo, Kim, Jong-Hoon, Lee, Jae-Young, Kim, Sang Kyum
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600264/
https://www.ncbi.nlm.nih.gov/pubmed/32987920
http://dx.doi.org/10.3390/pharmaceutics12100916
Descripción
Sumario:In our previous study, Hwang-Ryun-Hae-Dok-Tang, which contains berberine (BBR) as a main active ingredient, inhibited cytochrome P450 (CYP) 2D6 in a quasi-irreversible manner. However, no information is available on the detailed mechanism of BBR-induced CYP2D6 inhibition. Thus, the present study aimed to characterize the inhibition mode and kinetics of BBR and its analogues against CYP2D6 using pooled human liver microsomes (HLM). BBR exhibited selective quasi-irreversible inhibition of CYP2D6 with inactivation rate constant (k(inact)) of 0.025 min(−1), inhibition constant (K(I)) of 4.29 µM, and k(inact)/K(I) of 5.83 mL/min/µmol. In pooled HLM, BBR was metabolized to thalifendine (TFD), demethyleneberberine (DMB), M1 (proposed as demethylene-TFD), and to a lesser extent berberrubine (BRB), showing moderate metabolic stability with a half-life of 35.4 min and a microsomal intrinsic clearance of 7.82 µL/min/mg protein. However, unlike BBR, those metabolites (i.e., TFD, DMB, and BRB) were neither selective nor potent inhibitors of CYP2D6, based on comparison of half-maximal inhibitory concentration (IC(50)). Notably, TFD, but not DMB, exhibited metabolism-dependent CYP2D6 inhibition as in the case of BBR, which suggests that methylenedioxybenzene moiety of BBR may play a critical role in the quasi-irreversible inhibition. Moreover, the metabolic clearance of nebivolol (β-blocker; CYP2D6 substrate) was reduced in the presence of BBR. The present results warrant further evaluation of BBR–drug interactions in clinical situations.