Cargando…
Regression Networks for Neurophysiological Indicator Evaluation in Practicing Motor Imagery Tasks
Motor Imagery (MI) promotes motor learning in activities, like developing professional motor skills, sports gestures, and patient rehabilitation. However, up to 30% of users may not develop enough coordination skills after training sessions because of inter and intra-subject variability. Here, we de...
Autores principales: | Velasquez-Martinez, Luisa, Caicedo-Acosta, Julian, Acosta-Medina, Carlos, Alvarez-Meza, Andres, Castellanos-Dominguez, German |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600302/ https://www.ncbi.nlm.nih.gov/pubmed/33020435 http://dx.doi.org/10.3390/brainsci10100707 |
Ejemplares similares
-
Deep Neural Regression Prediction of Motor Imagery Skills Using EEG Functional Connectivity Indicators
por: Caicedo-Acosta, Julian, et al.
Publicado: (2021) -
Entropy-Based Estimation of Event-Related De/Synchronization in Motor Imagery Using Vector-Quantized Patterns
por: Velasquez-Martinez, Luisa, et al.
Publicado: (2020) -
Dynamic Modeling of Common Brain Neural Activity in Motor Imagery Tasks
por: Velasquez-Martinez, Luisa F., et al.
Publicado: (2020) -
Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification
por: Collazos-Huertas, Diego, et al.
Publicado: (2020) -
Subject-Dependent Artifact Removal for Enhancing Motor Imagery Classifier Performance under Poor Skills
por: Tobón-Henao, Mateo, et al.
Publicado: (2022)