Cargando…
Fault Diagnosis of Rolling Bearings Based on a Residual Dilated Pyramid Network and Full Convolutional Denoising Autoencoder
Intelligent fault diagnosis algorithm for rolling bearings has received increasing attention. However, in actual industrial environments, most rolling bearings work under severe working conditions of variable speed and strong noise, which makes the performance of many intelligent fault diagnosis met...
Autores principales: | Shi, Hongmei, Chen, Jingcheng, Si, Jin, Zheng, Changchang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600409/ https://www.ncbi.nlm.nih.gov/pubmed/33050210 http://dx.doi.org/10.3390/s20205734 |
Ejemplares similares
-
Sparse Convolutional Denoising Autoencoders for Genotype Imputation
por: Chen, Junjie, et al.
Publicado: (2019) -
Fault Diagnosis of Permanent Magnet Synchronous Motor Based on Stacked Denoising Autoencoder
por: Xu, Xiaowei, et al.
Publicado: (2021) -
A Novel Fault Diagnosis Method for Denoising Autoencoder Assisted by Digital Twin
por: Cai, Wenan, et al.
Publicado: (2022) -
Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network
por: Zhang, Xiong, et al.
Publicado: (2023) -
An improved multi-scale branching convolutional neural network for rolling bearing fault diagnosis
por: Xu, Meng, et al.
Publicado: (2023)