Cargando…
Running on Empty: A Metabolomics Approach to Investigating Changing Energy Metabolism during Fasted Exercise and Rest
Understanding the metabolic processes in energy metabolism, particularly during fasted exercise, is a growing area of research. Previous work has focused on measuring metabolites pre and post exercise. This can provide information about the final state of energy metabolism in the participants, but i...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600507/ https://www.ncbi.nlm.nih.gov/pubmed/33050077 http://dx.doi.org/10.3390/metabo10100399 |
Sumario: | Understanding the metabolic processes in energy metabolism, particularly during fasted exercise, is a growing area of research. Previous work has focused on measuring metabolites pre and post exercise. This can provide information about the final state of energy metabolism in the participants, but it does not show how these processes vary during the exercise and any subsequent post-exercise period. To address this, the work described here took fasted participants and subjected them to an exercise and rest protocol under laboratory settings, which allowed for breath and blood sampling both pre, during and post exercise. Analysis of the data produced from both the physiological measurements and the untargeted metabolomics measurements showed clear switching between glycolytic and ketolytic metabolism, with the liquid chromatography-mass spectrometry (LC-MS) data showing the separate stages of ketolytic metabolism, notably the transport, release and breakdown of long chain fatty acids. Several signals, putatively identified as short peptides, were observed to change in a pattern similar to that of the ketolytic metabolites. This work highlights the power of untargeted metabolomic methods as an investigative tool for exercise science, both to follow known processes in a more complete way and discover possible novel biomarkers. |
---|