Cargando…
Detection and Analysis of C-to-U RNA Editing in Rice Mitochondria-Encoded ORFs
Cytidine to uridine (C-to-U) RNA editing is an important type of substitutional RNA modification and is almost omnipresent in plant chloroplasts and mitochondria. In rice mitochondria, 491 C-to-U editing sites have been identified previously, and case studies have elucidated the function of several...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600565/ https://www.ncbi.nlm.nih.gov/pubmed/32998293 http://dx.doi.org/10.3390/plants9101277 |
_version_ | 1783603176227733504 |
---|---|
author | Zheng, Peng Wang, Dongxin Huang, Yuqing Chen, Hao Du, Hao Tu, Jumin |
author_facet | Zheng, Peng Wang, Dongxin Huang, Yuqing Chen, Hao Du, Hao Tu, Jumin |
author_sort | Zheng, Peng |
collection | PubMed |
description | Cytidine to uridine (C-to-U) RNA editing is an important type of substitutional RNA modification and is almost omnipresent in plant chloroplasts and mitochondria. In rice mitochondria, 491 C-to-U editing sites have been identified previously, and case studies have elucidated the function of several C-to-U editing sites in rice, but the functional consequence of most C-to-U alterations needs to be investigated further. Here, by means of Sanger sequencing and publicly available RNA-seq data, we identified a total of 569 C-to-U editing sites in rice mitochondria-encoded open reading frames (ORFs), 85.41% of these editing sites were observed on the first or the second base of a codon, resulting in the alteration of encoded amino acid. Moreover, we found some novel editing sites and several inaccurately annotated sites which may be functionally important, based on the highly conserved amino acids encoded by these edited codons. Finally, we annotated all 569 C-to-U RNA editing sites in their biological context. More precise information about C-to-U editing sites in rice mitochondria-encoded ORFs will facilitate our investigation on the function of C-to-U editing events in rice and also provide a valid benchmark from rice for the analysis of mitochondria C-to-U editing in other plant species. |
format | Online Article Text |
id | pubmed-7600565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76005652020-11-01 Detection and Analysis of C-to-U RNA Editing in Rice Mitochondria-Encoded ORFs Zheng, Peng Wang, Dongxin Huang, Yuqing Chen, Hao Du, Hao Tu, Jumin Plants (Basel) Article Cytidine to uridine (C-to-U) RNA editing is an important type of substitutional RNA modification and is almost omnipresent in plant chloroplasts and mitochondria. In rice mitochondria, 491 C-to-U editing sites have been identified previously, and case studies have elucidated the function of several C-to-U editing sites in rice, but the functional consequence of most C-to-U alterations needs to be investigated further. Here, by means of Sanger sequencing and publicly available RNA-seq data, we identified a total of 569 C-to-U editing sites in rice mitochondria-encoded open reading frames (ORFs), 85.41% of these editing sites were observed on the first or the second base of a codon, resulting in the alteration of encoded amino acid. Moreover, we found some novel editing sites and several inaccurately annotated sites which may be functionally important, based on the highly conserved amino acids encoded by these edited codons. Finally, we annotated all 569 C-to-U RNA editing sites in their biological context. More precise information about C-to-U editing sites in rice mitochondria-encoded ORFs will facilitate our investigation on the function of C-to-U editing events in rice and also provide a valid benchmark from rice for the analysis of mitochondria C-to-U editing in other plant species. MDPI 2020-09-28 /pmc/articles/PMC7600565/ /pubmed/32998293 http://dx.doi.org/10.3390/plants9101277 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zheng, Peng Wang, Dongxin Huang, Yuqing Chen, Hao Du, Hao Tu, Jumin Detection and Analysis of C-to-U RNA Editing in Rice Mitochondria-Encoded ORFs |
title | Detection and Analysis of C-to-U RNA Editing in Rice Mitochondria-Encoded ORFs |
title_full | Detection and Analysis of C-to-U RNA Editing in Rice Mitochondria-Encoded ORFs |
title_fullStr | Detection and Analysis of C-to-U RNA Editing in Rice Mitochondria-Encoded ORFs |
title_full_unstemmed | Detection and Analysis of C-to-U RNA Editing in Rice Mitochondria-Encoded ORFs |
title_short | Detection and Analysis of C-to-U RNA Editing in Rice Mitochondria-Encoded ORFs |
title_sort | detection and analysis of c-to-u rna editing in rice mitochondria-encoded orfs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600565/ https://www.ncbi.nlm.nih.gov/pubmed/32998293 http://dx.doi.org/10.3390/plants9101277 |
work_keys_str_mv | AT zhengpeng detectionandanalysisofctournaeditinginricemitochondriaencodedorfs AT wangdongxin detectionandanalysisofctournaeditinginricemitochondriaencodedorfs AT huangyuqing detectionandanalysisofctournaeditinginricemitochondriaencodedorfs AT chenhao detectionandanalysisofctournaeditinginricemitochondriaencodedorfs AT duhao detectionandanalysisofctournaeditinginricemitochondriaencodedorfs AT tujumin detectionandanalysisofctournaeditinginricemitochondriaencodedorfs |