Cargando…
Fuzzy-Inspired Photoplethysmography Signal Classification with Bio-Inspired Optimization for Analyzing Cardiovascular Disorders
The main aim of this paper is to optimize the output of diagnosis of Cardiovascular Disorders (CVD) in Photoplethysmography (PPG) signals by utilizing a fuzzy-based approach with classification. The extracted parameters such as Energy, Variance, Approximate Entropy (ApEn), Mean, Standard Deviation (...
Autores principales: | Prabhakar, Sunil Kumar, Rajaguru, Harikumar, Kim, Sun-Hee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600594/ https://www.ncbi.nlm.nih.gov/pubmed/32998452 http://dx.doi.org/10.3390/diagnostics10100763 |
Ejemplares similares
-
Alcoholic EEG signal classification with Correlation Dimension based distance metrics approach and Modified Adaboost classification
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2020) -
Schizophrenia EEG Signal Classification Based on Swarm Intelligence Computing
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2020) -
Performance comparison of bio-inspired and learning-based clustering analysis with machine learning techniques for classification of EEG signals
por: Prabhakar, Sunil Kumar, et al.
Publicado: (2023) -
An Advanced Bio-Inspired PhotoPlethysmoGraphy (PPG) and ECG Pattern Recognition System for Medical Assessment
por: Rundo, Francesco, et al.
Publicado: (2018) -
Ensembles of type 2 fuzzy neural models and their optimization with bio-inspired algorithms for time series prediction
por: Soto, Jesús, et al.
Publicado: (2017)