Cargando…
Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification
Hazelnut (HS) and walnut (WS) shells, an abundant by-product of the processing industries of these edible nuts, are traditionally considered as a low-value waste. However, they are a source of valuable compounds with an interesting chemical profile for the chemical and pharmaceutical sectors. In thi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600730/ https://www.ncbi.nlm.nih.gov/pubmed/32987840 http://dx.doi.org/10.3390/biom10101363 |
_version_ | 1783603222160605184 |
---|---|
author | Herrera, René Hemming, Jarl Smeds, Annika Gordobil, Oihana Willför, Stefan Labidi, Jalel |
author_facet | Herrera, René Hemming, Jarl Smeds, Annika Gordobil, Oihana Willför, Stefan Labidi, Jalel |
author_sort | Herrera, René |
collection | PubMed |
description | Hazelnut (HS) and walnut (WS) shells, an abundant by-product of the processing industries of these edible nuts, are traditionally considered as a low-value waste. However, they are a source of valuable compounds with an interesting chemical profile for the chemical and pharmaceutical sectors. In this study, the lipophilic and hydrophilic extracts present in HS and WS were quantified and identified, then the polar fractions were chromatographically separated, and their antioxidant capacity was studied. The experimental work includes the isolation of crude lipophilic and hydrophilic extracts by an accelerated extraction process, chromatographic analysis (gas chromatography-flame ionization (GC-FID), GC-mass spectroscopy (GC-MS), high-performance size-exclusion chromatography (HPSEC), thin-layer chromatography (TLC)), and quantification of the components. In addition, a thorough compositional characterization of the subgroups obtained by flash chromatography and their antioxidant capacity was carried out. The gravimetric concentrations showed different lipophilic/hydrophilic ratios (0.70 for HS and 0.23 for WS), indicating a higher proportion of polar compounds in WS than in HS. Moreover, the lipophilic extracts were principally composed of short-chain fatty acids (stearic, palmitic, and oleic acid), triglycerides, and sterols. The polar fractions were screened by thin-layer chromatography and then separated by flash chromatography, obtaining fractions free of fatty acids and sugar derivatives (97:3 in HS and 95:5 in WS), and mixtures richer in phenolic compounds and flavonoids such as guaiacyl derivatives, quercetin, pinobanksin, and catechin. The most polar fractions presented a higher antioxidant capacity than that of the crude extracts. |
format | Online Article Text |
id | pubmed-7600730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76007302020-11-01 Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification Herrera, René Hemming, Jarl Smeds, Annika Gordobil, Oihana Willför, Stefan Labidi, Jalel Biomolecules Article Hazelnut (HS) and walnut (WS) shells, an abundant by-product of the processing industries of these edible nuts, are traditionally considered as a low-value waste. However, they are a source of valuable compounds with an interesting chemical profile for the chemical and pharmaceutical sectors. In this study, the lipophilic and hydrophilic extracts present in HS and WS were quantified and identified, then the polar fractions were chromatographically separated, and their antioxidant capacity was studied. The experimental work includes the isolation of crude lipophilic and hydrophilic extracts by an accelerated extraction process, chromatographic analysis (gas chromatography-flame ionization (GC-FID), GC-mass spectroscopy (GC-MS), high-performance size-exclusion chromatography (HPSEC), thin-layer chromatography (TLC)), and quantification of the components. In addition, a thorough compositional characterization of the subgroups obtained by flash chromatography and their antioxidant capacity was carried out. The gravimetric concentrations showed different lipophilic/hydrophilic ratios (0.70 for HS and 0.23 for WS), indicating a higher proportion of polar compounds in WS than in HS. Moreover, the lipophilic extracts were principally composed of short-chain fatty acids (stearic, palmitic, and oleic acid), triglycerides, and sterols. The polar fractions were screened by thin-layer chromatography and then separated by flash chromatography, obtaining fractions free of fatty acids and sugar derivatives (97:3 in HS and 95:5 in WS), and mixtures richer in phenolic compounds and flavonoids such as guaiacyl derivatives, quercetin, pinobanksin, and catechin. The most polar fractions presented a higher antioxidant capacity than that of the crude extracts. MDPI 2020-09-24 /pmc/articles/PMC7600730/ /pubmed/32987840 http://dx.doi.org/10.3390/biom10101363 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Herrera, René Hemming, Jarl Smeds, Annika Gordobil, Oihana Willför, Stefan Labidi, Jalel Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title | Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title_full | Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title_fullStr | Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title_full_unstemmed | Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title_short | Recovery of Bioactive Compounds from Hazelnuts and Walnuts Shells: Quantitative–Qualitative Analysis and Chromatographic Purification |
title_sort | recovery of bioactive compounds from hazelnuts and walnuts shells: quantitative–qualitative analysis and chromatographic purification |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600730/ https://www.ncbi.nlm.nih.gov/pubmed/32987840 http://dx.doi.org/10.3390/biom10101363 |
work_keys_str_mv | AT herrerarene recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification AT hemmingjarl recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification AT smedsannika recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification AT gordobiloihana recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification AT willforstefan recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification AT labidijalel recoveryofbioactivecompoundsfromhazelnutsandwalnutsshellsquantitativequalitativeanalysisandchromatographicpurification |