Cargando…
Pore Structures for High-Throughput Nanopore Devices
Nanopore devices are expected to advance the next-generation of nanobiodevices because of their strong sensing and analyzing capabilities for single molecules and bioparticles. However, the device throughputs are not sufficiently high. Although analytes pass through a nanopore by electrophoresis, th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600762/ https://www.ncbi.nlm.nih.gov/pubmed/32993177 http://dx.doi.org/10.3390/mi11100893 |
Sumario: | Nanopore devices are expected to advance the next-generation of nanobiodevices because of their strong sensing and analyzing capabilities for single molecules and bioparticles. However, the device throughputs are not sufficiently high. Although analytes pass through a nanopore by electrophoresis, the electric field gradient is localized inside and around a nanopore structure. Thus, analytes located far from a nanopore cannot be driven by electrophoresis. Here, we report nanopore structures for high-throughput sensing, namely, inverted pyramid (IP)-shaped nanopore structures. Silicon-based IP-shaped nanopore structures create a homogeneous electric field gradient within a nanopore device, indicating that most of the analytes can pass through a nanopore by electrophoresis, even though the analytes are suspended far from the nanopore entrance. In addition, the nanostructures can be fabricated only by photolithography. The present study suggests a high potential for inverted pyramid shapes to serve as nanopore devices for high-throughput sensing. |
---|