Cargando…

The Encapsulation of Febuxostat into Emulsomes Strongly Enhances the Cytotoxic Potential of the Drug on HCT 116 Colon Cancer Cells

Febuxostat (FBX) is a drug able to inhibit xanthine oxidase and reduce uric acid production commonly used for the treatment of hyperuricemia in subjects suffering from gout. Several studies have also been directed at its use as anti-cancer drug during the last years, opening a window for its off-lab...

Descripción completa

Detalles Bibliográficos
Autores principales: Fahmy, Usama A., Aldawsari, Hibah M., Badr-Eldin, Shaimaa M., Ahmed, Osama A. A., Alhakamy, Nabil A., Alsulimani, Helal H., Caraci, Filippo, Caruso, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600960/
https://www.ncbi.nlm.nih.gov/pubmed/33050567
http://dx.doi.org/10.3390/pharmaceutics12100956
Descripción
Sumario:Febuxostat (FBX) is a drug able to inhibit xanthine oxidase and reduce uric acid production commonly used for the treatment of hyperuricemia in subjects suffering from gout. Several studies have also been directed at its use as anti-cancer drug during the last years, opening a window for its off-label use. In the present study, an optimized formulation in terms of vesicle size and drug release, obtained by encapsulation of FBX into the emulsomes (FBX-EMLs), was evaluated for its cytotoxic potential in human colorectal carcinoma (HCT 116) cells. The optimized FBX-EMLs formula had an improved half maximal inhibitory concentration (IC50), about 4-fold lower, compared to the free drug. The cell cycle analysis showed a significant inhibition of the HCT 116 cells proliferation following FBX-EMLs treatment compared to all the other conditions, with a higher number of cells accumulating on G2/M and pre-G1 phases, paralleled by a significant reduction of cells in G0/G1 and S phases. The optimized formula was also able to significantly increase the percentage of cell population in both early and late stages of apoptosis, characterized by a higher intracellular caspase-3 concentration, as well as percentage of necrotic cells. Lastly, the FBX ability to decrease the mitochondrial membrane potential was enhanced when the drug was delivered into the EMLs. In conclusion, the new formulation of FBX into EMLs improved all the parameters related to the anti-proliferative activity and the toxic potential of the drug towards colorectal cancer cells.