Cargando…

Treponema spp. Isolated from Bovine Digital Dermatitis Display Different Pathogenicity in a Murine Abscess Model

Digital dermatitis (DD) causes lameness in cattle with substantial negative impact on sustainability and animal welfare. Although several species of Treponema bacteria have been isolated from various DD stages, their individual or synergistic roles in the initiation or development of lesions remain...

Descripción completa

Detalles Bibliográficos
Autores principales: Arrazuria, Rakel, Knight, Cameron G., Lahiri, Priyoshi, Cobo, Eduardo R., Barkema, Herman W., De Buck, Jeroen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600977/
https://www.ncbi.nlm.nih.gov/pubmed/33007829
http://dx.doi.org/10.3390/microorganisms8101507
Descripción
Sumario:Digital dermatitis (DD) causes lameness in cattle with substantial negative impact on sustainability and animal welfare. Although several species of Treponema bacteria have been isolated from various DD stages, their individual or synergistic roles in the initiation or development of lesions remain largely unknown. The objective of this study was to compare effects of the three most common Treponema species isolated from DD lesions in cattle (T. phagedenis, T. medium and T. pedis), both as individual and as mixed inoculations, in a murine abscess model. A total of 10(9) or 5 × 10(8) Treponema spp. were inoculated subcutaneously, and produced abscess was studied after 7 days post infection. There were no synergistic effects when two or three species were inoculated together; however, T. medium produced the largest abscesses, whereas those produced by T. phagedenis were the smallest and least severe. Treponema species were cultured from skin lesions at 7 days post infection and, additionally, from the kidneys of some mice (2/5), confirming systemic infection may occur. Taken together, these findings suggest that T. medium and T. pedis may have more important roles in DD lesion initiation and development than T. phagedenis.