Cargando…

The Effect of Tactile Training on Sustained Attention in Young Adults

Sustained attention is crucial for higher-order cognition and real-world activities. The idea that tactile training improves sustained attention is appealing and has clinical significance. The aim of this study was to explore whether tactile training could improve visual sustained attention. Using 1...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Yu, Zhang, Jicong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601015/
https://www.ncbi.nlm.nih.gov/pubmed/33008095
http://dx.doi.org/10.3390/brainsci10100695
Descripción
Sumario:Sustained attention is crucial for higher-order cognition and real-world activities. The idea that tactile training improves sustained attention is appealing and has clinical significance. The aim of this study was to explore whether tactile training could improve visual sustained attention. Using 128-channel electroencephalography (EEG), we found that participants with tactile training outperformed non-trainees in the accuracy and calculation efficiency measured by the Math task. Furthermore, trainees demonstrated significantly decreased omission error measured by the sustained attention to response task (SART). We also found that the improvements in behavioral performance were associated with parietal P300 amplitude enhancements. EEG source imaging analyses revealed stronger brain activation among the trainees in the prefrontal and sensorimotor regions at P300. These results suggest that the tactile training can improve sustained attention in young adults, and the improved sustained attention following training may be due to more effective attentional resources allocation. Our findings also indicate the use of a noninvasive tactile training paradigm to improve cognitive functions (e.g., sustained attention) in young adults, potentially leading to new training and rehabilitative protocols.