Cargando…
An Emotion Assessment of Stroke Patients by Using Bispectrum Features of EEG Signals
Emotion assessment in stroke patients gives meaningful information to physiotherapists to identify the appropriate method for treatment. This study was aimed to classify the emotions of stroke patients by applying bispectrum features in electroencephalogram (EEG) signals. EEG signals from three grou...
Autores principales: | Wen Yean, Choong, Wan Ahmad, Wan Khairunizam, Mustafa, Wan Azani, Murugappan, Murugappan, Rajamanickam, Yuvaraj, Adom, Abdul Hamid, Omar, Mohammad Iqbal, Zheng, Bong Siao, Junoh, Ahmad Kadri, Razlan, Zuradzman Mohamad, Bakar, Shahriman Abu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601112/ https://www.ncbi.nlm.nih.gov/pubmed/32992930 http://dx.doi.org/10.3390/brainsci10100672 |
Ejemplares similares
-
Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst
por: Selvaraj, Jerritta, et al.
Publicado: (2013) -
On the analysis of EEG power, frequency and asymmetry in Parkinson’s disease during emotion processing
por: Yuvaraj, Rajamanickam, et al.
Publicado: (2014) -
Frequency Band Analysis of Electrocardiogram (ECG) Signals for Human
Emotional State Classification Using Discrete Wavelet Transform (DWT)
por: Murugappan, Murugappan, et al.
Publicado: (2013) -
Emotion Recognition from Spatio-Temporal Representation of EEG Signals via 3D-CNN with Ensemble Learning Techniques
por: Yuvaraj, Rajamanickam, et al.
Publicado: (2023) -
Subtractive Fuzzy Classifier Based Driver Distraction Levels Classification
Using EEG
por: Wali, Mousa Kadhim, et al.
Publicado: (2013)