Cargando…

Probing Changes in Ca(2+)-Induced Interaction Forces between Calmodulin and Melittin by Atomic Force Microscopy

Mechanobiology studies the means by which physical forces and mechanical properties change intra- or inter- biological macromolecules. Calmodulin (CaM) is involved in physiological activities and various metabolic processes in eukaryotic cells. Although the configuration changes in the interaction b...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Sheng, Wang, Jianhua, Sun, Heng, Fu, Yuna, Wang, Yan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601158/
https://www.ncbi.nlm.nih.gov/pubmed/33007824
http://dx.doi.org/10.3390/mi11100906
Descripción
Sumario:Mechanobiology studies the means by which physical forces and mechanical properties change intra- or inter- biological macromolecules. Calmodulin (CaM) is involved in physiological activities and various metabolic processes in eukaryotic cells. Although the configuration changes in the interaction between calmodulin and melittin have been studied, the biomechanical relationship of their interaction has rarely been explored. Here, we measured the adhesion forces between calmodulin and melittin in solutions of gradient concentration of calcium ions using atomic force microscopy (AFM). We found that the specific (F(i)) and nonspecific (F(0)) adhesion forces between single melittin and calmodulin in a PBS solution were 69.4 ± 5.0 and 29.3 ± 8.9 pN, respectively. In the presence of 10(−7) to 10(−3) M Ca(2+) PBS solution, the F(i) increased significantly to 93.8 ± 5.0, 139.9 ± 9.0, 140.4 ± 9.7, 171.5 ± 9.0, and 213.3 ± 17.8 pN, indicating that the unbinding force between melittin and calmodulin increased in the presence of Ca(2+) in a concentration-dependent manner. These findings demonstrated that biomechanical studies based on AFM could help us better understand the melittin/calmodulin-binding processes in the presence of calcium and help us design and screen peptide drugs based on calmodulin.