Cargando…

Metformin Enhances Excitatory Synaptic Transmission onto Hippocampal CA1 Pyramidal Neurons

Metformin (Met) is a first-line drug for type 2 diabetes mellitus (T2DM). Numerous studies have shown that Met exerts beneficial effects on a variety of neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD). However, it is still largely un...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Wen-Bing, Chen, Jiang, Liu, Zi-Yang, Luo, Bin, Zhou, Tian, Fei, Er-Kang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601223/
https://www.ncbi.nlm.nih.gov/pubmed/33020379
http://dx.doi.org/10.3390/brainsci10100706
Descripción
Sumario:Metformin (Met) is a first-line drug for type 2 diabetes mellitus (T2DM). Numerous studies have shown that Met exerts beneficial effects on a variety of neurological disorders, including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Huntington’s disease (HD). However, it is still largely unclear how Met acts on neurons. Here, by treating acute hippocampal slices with Met (1 μM and 10 μM) and recording synaptic transmission as well as neuronal excitability of CA1 pyramidal neurons, we found that Met treatments significantly increased the frequency of miniature excitatory postsynaptic currents (mEPSCs), but not amplitude. Neither frequency nor amplitude of miniature inhibitory postsynaptic currents (mIPSCs) were changed with Met treatments. Analysis of paired-pulse ratios (PPR) demonstrates that enhanced presynaptic glutamate release from terminals innervating CA1 hippocampal pyramidal neurons, while excitability of CA1 pyramidal neurons was not altered. Our results suggest that Met preferentially increases glutamatergic rather than GABAergic transmission in hippocampal CA1, providing a new insight on how Met acts on neurons.