Cargando…
Recent Advances in Surface Activation of Polytetrafluoroethylene (PTFE) by Gaseous Plasma Treatments
Fluorinated polymers are renowned for their chemical inertness and thus poor wettability and adhesion of various coatings. Apart from chemical methods employing somewhat toxic primers, gaseous plasma treatment is a popular method for the modification of surface properties. Different authors have use...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601227/ https://www.ncbi.nlm.nih.gov/pubmed/33036423 http://dx.doi.org/10.3390/polym12102295 |
Sumario: | Fluorinated polymers are renowned for their chemical inertness and thus poor wettability and adhesion of various coatings. Apart from chemical methods employing somewhat toxic primers, gaseous plasma treatment is a popular method for the modification of surface properties. Different authors have used different plasmas, and the resultant surface finish spans between super-hydrophobic and super-hydrophilic character. Some authors also reported the hydrophobic recovery. The review of recent papers is presented and discussed. Correlations between plasma and/or discharge parameters and the surface finish are drawn and the most important conclusions are summarized. The concentration of oxygen in the surface film as probed by X-ray photoelectron spectroscopy is inversely dependent on the concentration of oxygen in gaseous plasma. The predominant mechanism leading to hydrophilic surface finish is bond scission by deep ultraviolet radiation rather than functionalization with reactive oxygen species. |
---|