Cargando…
A Deep Machine Learning Method for Concurrent and Interleaved Human Activity Recognition
Human activity recognition has become an important research topic within the field of pervasive computing, ambient assistive living (AAL), robotics, health-care monitoring, and many more. Techniques for recognizing simple and single activities are typical for now, but recognizing complex activities...
Autores principales: | Thapa, Keshav, Abdullah Al, Zubaer Md., Lamichhane, Barsha, Yang, Sung-Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601290/ https://www.ncbi.nlm.nih.gov/pubmed/33053720 http://dx.doi.org/10.3390/s20205770 |
Ejemplares similares
-
Improving R Peak Detection in ECG Signal Using Dynamic Mode Selected Energy and Adaptive Window Sizing Algorithm with Decision Tree Algorithm
por: Abdullah Al, Zubaer Md., et al.
Publicado: (2021) -
Detection of Image Level Forgery with Various Constraints Using DFDC Full and Sample Datasets
por: Lamichhane, Barsha, et al.
Publicado: (2022) -
Learning in deep neural networks and brains with similarity-weighted interleaved learning
por: Saxena, Rajat, et al.
Publicado: (2022) -
Semi-Supervised Adversarial Learning Using LSTM for Human Activity Recognition
por: Yang, Sung-Hyun, et al.
Publicado: (2022) -
Interleaving vs True Concurrency: Some Instructive Security Examples
por: Gorrieri, Roberto
Publicado: (2020)