Cargando…

Characterization of a Low-Cost Plastic Fiber Array Detector for Proton Beam Dosimetry

The Pencil Beam Scanning (PBS) technique in proton therapy uses fast magnets to scan the tumor volume rapidly. Changing the proton energy allows changing to layers in the third dimension, hence scanning the same volume several times. The PBS approach permits adapting the speed and/or current to modu...

Descripción completa

Detalles Bibliográficos
Autores principales: Ozkan Loch, Cigdem, Eichenberger, Michael Alexander, Togno, Michele, Zinsli, Simon Pascal, Egloff, Martina, Papa, Angela, Ischebeck, Rasmus, Lomax, Antony John, Peier, Peter, Safai, Sairos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601306/
https://www.ncbi.nlm.nih.gov/pubmed/33050153
http://dx.doi.org/10.3390/s20205727
_version_ 1783603380291108864
author Ozkan Loch, Cigdem
Eichenberger, Michael Alexander
Togno, Michele
Zinsli, Simon Pascal
Egloff, Martina
Papa, Angela
Ischebeck, Rasmus
Lomax, Antony John
Peier, Peter
Safai, Sairos
author_facet Ozkan Loch, Cigdem
Eichenberger, Michael Alexander
Togno, Michele
Zinsli, Simon Pascal
Egloff, Martina
Papa, Angela
Ischebeck, Rasmus
Lomax, Antony John
Peier, Peter
Safai, Sairos
author_sort Ozkan Loch, Cigdem
collection PubMed
description The Pencil Beam Scanning (PBS) technique in proton therapy uses fast magnets to scan the tumor volume rapidly. Changing the proton energy allows changing to layers in the third dimension, hence scanning the same volume several times. The PBS approach permits adapting the speed and/or current to modulate the delivered dose. We built a simple prototype that measures the dose distribution in a single step. The active detection material consists of a single layer of scintillating fibers (i.e., 1D) with an active length of 100 mm, a width of 18.25 mm, and an insignificant space (20 [Formula: see text] m) between them. A commercial CMOS-based camera detects the scintillation light. Short exposure times allow running the camera at high frame rates, thus, monitoring the beam motion. A simple image processing method extracts the dose information from each fiber of the array. The prototype would allow scaling the concept to multiple layers read out by the same camera, such that the costs do not scale with the dimensions of the fiber array. Presented here are the characteristics of the prototype, studied under two modalities: spatial resolution, linearity, and energy dependence, characterized at the Center for Proton Therapy (Paul Scherrer Institute); the dose rate response, measured at an electron accelerator (Swiss Federal Institute of Metrology).
format Online
Article
Text
id pubmed-7601306
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76013062020-11-01 Characterization of a Low-Cost Plastic Fiber Array Detector for Proton Beam Dosimetry Ozkan Loch, Cigdem Eichenberger, Michael Alexander Togno, Michele Zinsli, Simon Pascal Egloff, Martina Papa, Angela Ischebeck, Rasmus Lomax, Antony John Peier, Peter Safai, Sairos Sensors (Basel) Article The Pencil Beam Scanning (PBS) technique in proton therapy uses fast magnets to scan the tumor volume rapidly. Changing the proton energy allows changing to layers in the third dimension, hence scanning the same volume several times. The PBS approach permits adapting the speed and/or current to modulate the delivered dose. We built a simple prototype that measures the dose distribution in a single step. The active detection material consists of a single layer of scintillating fibers (i.e., 1D) with an active length of 100 mm, a width of 18.25 mm, and an insignificant space (20 [Formula: see text] m) between them. A commercial CMOS-based camera detects the scintillation light. Short exposure times allow running the camera at high frame rates, thus, monitoring the beam motion. A simple image processing method extracts the dose information from each fiber of the array. The prototype would allow scaling the concept to multiple layers read out by the same camera, such that the costs do not scale with the dimensions of the fiber array. Presented here are the characteristics of the prototype, studied under two modalities: spatial resolution, linearity, and energy dependence, characterized at the Center for Proton Therapy (Paul Scherrer Institute); the dose rate response, measured at an electron accelerator (Swiss Federal Institute of Metrology). MDPI 2020-10-09 /pmc/articles/PMC7601306/ /pubmed/33050153 http://dx.doi.org/10.3390/s20205727 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ozkan Loch, Cigdem
Eichenberger, Michael Alexander
Togno, Michele
Zinsli, Simon Pascal
Egloff, Martina
Papa, Angela
Ischebeck, Rasmus
Lomax, Antony John
Peier, Peter
Safai, Sairos
Characterization of a Low-Cost Plastic Fiber Array Detector for Proton Beam Dosimetry
title Characterization of a Low-Cost Plastic Fiber Array Detector for Proton Beam Dosimetry
title_full Characterization of a Low-Cost Plastic Fiber Array Detector for Proton Beam Dosimetry
title_fullStr Characterization of a Low-Cost Plastic Fiber Array Detector for Proton Beam Dosimetry
title_full_unstemmed Characterization of a Low-Cost Plastic Fiber Array Detector for Proton Beam Dosimetry
title_short Characterization of a Low-Cost Plastic Fiber Array Detector for Proton Beam Dosimetry
title_sort characterization of a low-cost plastic fiber array detector for proton beam dosimetry
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601306/
https://www.ncbi.nlm.nih.gov/pubmed/33050153
http://dx.doi.org/10.3390/s20205727
work_keys_str_mv AT ozkanlochcigdem characterizationofalowcostplasticfiberarraydetectorforprotonbeamdosimetry
AT eichenbergermichaelalexander characterizationofalowcostplasticfiberarraydetectorforprotonbeamdosimetry
AT tognomichele characterizationofalowcostplasticfiberarraydetectorforprotonbeamdosimetry
AT zinslisimonpascal characterizationofalowcostplasticfiberarraydetectorforprotonbeamdosimetry
AT egloffmartina characterizationofalowcostplasticfiberarraydetectorforprotonbeamdosimetry
AT papaangela characterizationofalowcostplasticfiberarraydetectorforprotonbeamdosimetry
AT ischebeckrasmus characterizationofalowcostplasticfiberarraydetectorforprotonbeamdosimetry
AT lomaxantonyjohn characterizationofalowcostplasticfiberarraydetectorforprotonbeamdosimetry
AT peierpeter characterizationofalowcostplasticfiberarraydetectorforprotonbeamdosimetry
AT safaisairos characterizationofalowcostplasticfiberarraydetectorforprotonbeamdosimetry