Cargando…

Limited Availability of General Co-Repressors Uncovered in an Overexpression Context during Wing Venation in Drosophila melanogaster

Cell fate is determined by the coordinated activity of different pathways, including the conserved Notch pathway. Activation of Notch results in the transcription of Notch targets that are otherwise silenced by repressor complexes. In Drosophila, the repressor complex comprises the transcription fac...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagel, Anja C., Maier, Dieter, Scharpf, Janika, Ketelhut, Manuela, Preiss, Anette
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601384/
https://www.ncbi.nlm.nih.gov/pubmed/32998295
http://dx.doi.org/10.3390/genes11101141
Descripción
Sumario:Cell fate is determined by the coordinated activity of different pathways, including the conserved Notch pathway. Activation of Notch results in the transcription of Notch targets that are otherwise silenced by repressor complexes. In Drosophila, the repressor complex comprises the transcription factor Suppressor of Hairless (Su(H)) bound to the Notch antagonist Hairless (H) and the general co-repressors Groucho (Gro) and C-terminal binding protein (CtBP). The latter two are shared by different repressors from numerous pathways, raising the possibility that they are rate-limiting. We noted that the overexpression during wing development of H mutants H(dNT) and H(LD) compromised in Su(H)-binding induced ectopic veins. On the basis of the role of H as Notch antagonist, overexpression of Su(H)-binding defective H isoforms should be without consequence, implying different mechanisms but repression of Notch signaling activity. Perhaps excess H protein curbs general co-repressor availability. Supporting this model, nearly normal wings developed upon overexpression of H mutant isoforms that bound neither Su(H) nor co-repressor Gro and CtBP. Excessive H protein appeared to sequester general co-repressors, resulting in specific vein defects, indicating their limited availability during wing vein development. In conclusion, interpretation of overexpression phenotypes requires careful consideration of possible dominant negative effects from interception of limiting factors.