Cargando…
Deep Learning-Based Violin Bowing Action Recognition
We propose a violin bowing action recognition system that can accurately recognize distinct bowing actions in classical violin performance. This system can recognize bowing actions by analyzing signals from a depth camera and from inertial sensors that are worn by a violinist. The contribution of th...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601403/ https://www.ncbi.nlm.nih.gov/pubmed/33050164 http://dx.doi.org/10.3390/s20205732 |
Sumario: | We propose a violin bowing action recognition system that can accurately recognize distinct bowing actions in classical violin performance. This system can recognize bowing actions by analyzing signals from a depth camera and from inertial sensors that are worn by a violinist. The contribution of this study is threefold: (1) a dataset comprising violin bowing actions was constructed from data captured by a depth camera and multiple inertial sensors; (2) data augmentation was achieved for depth-frame data through rotation in three-dimensional world coordinates and for inertial sensing data through yaw, pitch, and roll angle transformations; and, (3) bowing action classifiers were trained using different modalities, to compensate for the strengths and weaknesses of each modality, based on deep learning methods with a decision-level fusion process. In experiments, large external motions and subtle local motions produced from violin bow manipulations were both accurately recognized by the proposed system (average accuracy > 80%). |
---|