Cargando…
Identification of Novel Hypothalamic MicroRNAs as Promising Therapeutics for SARS-CoV-2 by Regulating ACE2 and TMPRSS2 Expression: An In Silico Analysis
Background: Neuroinvasion of severe acute respiratory syndrome coronavirus (SARS-CoV) is well documented and, given the similarities between this virus and SARS-CoV-2, it seems that the neurological impairment that is associated with coronavirus disease 2019 (COVID-19) is due to SARS-CoV-2 neuroinva...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601472/ https://www.ncbi.nlm.nih.gov/pubmed/32992681 http://dx.doi.org/10.3390/brainsci10100666 |
Sumario: | Background: Neuroinvasion of severe acute respiratory syndrome coronavirus (SARS-CoV) is well documented and, given the similarities between this virus and SARS-CoV-2, it seems that the neurological impairment that is associated with coronavirus disease 2019 (COVID-19) is due to SARS-CoV-2 neuroinvasion. Hypothalamic circuits are exposed to the entry of the virus via the olfactory bulb and interact centrally with crucial respiratory nuclei. Hypothalamic microRNAs are considered as potential biomarkers and modulators for various diseases and future therapeutic targets. The present study aims to investigate the microRNAs that regulate the expression of hypothalamic angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), essential elements for SARS-CoV-2 cell entry. Methods: To determine potential hypothalamic miRNAs that can directly bind to ACE2 and TMPRSS2, multiple target bioinformatics prediction algorithms were used, including miRBase, Target scan, and miRWalk2.029. Results: Our in silico analysis has revealed that, although there are over 5000 hypothalamic miRNAs, around 31 miRNAs and 29 miRNAs have shown binding sites and strong binding capacity against ACE2 and TMPRSS2, respectively. Conclusion: These novel potential hypothalamic miRNAs can be used to identify new therapeutic targets to treat neurological symptoms in COVID-19 patients via regulation of ACE2 and TMPRSS2 expression. |
---|