Cargando…

MiR-4334-5p Facilitates Foot and Mouth Disease Virus Propagation by Suppressing Interferon Pathways via Direct Targeting ID1

Emerging evidence indicates that the host microRNAs (miRNAs) are important intracellular regulators and play pivotal roles in intricate host-pathogen interaction networks. In our previous studies, ssc-microRNA-4334-5p (miR-4334-5p) was identified as a differentially expressed miRNA in microarray-bas...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yanxue, Ren, Tingting, Chen, Haotai, Wang, Kailing, Zhang, Yongguang, Liu, Lei, Sun, Yuefeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601639/
https://www.ncbi.nlm.nih.gov/pubmed/32992599
http://dx.doi.org/10.3390/genes11101136
Descripción
Sumario:Emerging evidence indicates that the host microRNAs (miRNAs) are important intracellular regulators and play pivotal roles in intricate host-pathogen interaction networks. In our previous studies, ssc-microRNA-4334-5p (miR-4334-5p) was identified as a differentially expressed miRNA in microarray-based miRNAs profiling experiment, but whether miR-4334-5p regulates foot and mouth disease virus (FMDV) propagation is less understood. Here, we demonstrated that miR-4334-5p expression level was up-regulated shortly after FMDV infection, transfection of miR-4334-5p mimics promoted, while inhibitor transfection suppressed FMDV replication correspondingly. Further bioinformatic analysis and experimental study suggested ID1 was the direct target of miR-4334-5p, suppressing FMDV replication by regulating interferon (IFN) pathways. These findings shed light on microRNAs-ID1-interferon axis in regulating FMDV replication.