Cargando…

Non-Invasive Biomarkers for Early Detection of Breast Cancer

SIMPLE SUMMARY: Early diagnosis of breast cancer greatly increases the chance of cure and survival from the disease. The mammogram is widely used for early detection of breast cancer, but its effectiveness and accuracy have been a concern for a long time as well as its inability in detecting small c...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jiawei, Guan, Xin, Fan, Zhimin, Ching, Lai-Ming, Li, Yan, Wang, Xiaojia, Cao, Wen-Ming, Liu, Dong-Xu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601650/
https://www.ncbi.nlm.nih.gov/pubmed/32992445
http://dx.doi.org/10.3390/cancers12102767
Descripción
Sumario:SIMPLE SUMMARY: Early diagnosis of breast cancer greatly increases the chance of cure and survival from the disease. The mammogram is widely used for early detection of breast cancer, but its effectiveness and accuracy have been a concern for a long time as well as its inability in detecting small cancers, especially in women with dense breast tissues. Therefore, it is an unmet clinical need to develop a simple, convenient test to overcome the shortcomings of mammography. Liquid biopsy, which is based on the analysis of body fluids, has attracted much attention in the search for cancer biomarkers. Recent advances in analytical techniques have gradually made it possible to detect breast cancer early through a biomarker analysis of blood, nipple aspirate fluid, sweat, urine, tears, or the breath. We envision that a simple blood or breath test holds great promise as a biomarker for early detection of breast cancer in the near future. ABSTRACT: Breast cancer is the most common cancer in women worldwide. Accurate early diagnosis of breast cancer is critical in the management of the disease. Although mammogram screening has been widely used for breast cancer screening, high false-positive and false-negative rates and radiation from mammography have always been a concern. Over the last 20 years, the emergence of “omics” strategies has resulted in significant advances in the search for non-invasive biomarkers for breast cancer diagnosis at an early stage. Circulating carcinoma antigens, circulating tumor cells, circulating cell-free tumor nucleic acids (DNA or RNA), circulating microRNAs, and circulating extracellular vesicles in the peripheral blood, nipple aspirate fluid, sweat, urine, and tears, as well as volatile organic compounds in the breath, have emerged as potential non-invasive diagnostic biomarkers to supplement current clinical approaches to earlier detection of breast cancer. In this review, we summarize the current progress of research in these areas.