Cargando…
Integrative Data Augmentation with U-Net Segmentation Masks Improves Detection of Lymph Node Metastases in Breast Cancer Patients
SIMPLE SUMMARY: In recent years many successful models have been developed to perform various tasks in digital histopathology, yet, there is still a reluctance to fully embrace the new technologies in clinical settings. One of the reasons for this is that although these models have achieved high per...
Autores principales: | Jin, Yong Won, Jia, Shuo, Ashraf, Ahmed Bilal, Hu, Pingzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601653/ https://www.ncbi.nlm.nih.gov/pubmed/33053723 http://dx.doi.org/10.3390/cancers12102934 |
Ejemplares similares
-
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
Development and validation of the 3D U-Net algorithm for segmentation of pelvic lymph nodes on diffusion-weighted images
por: Liu, Xiang, et al.
Publicado: (2021) -
Fingerprinting Lymph Node Metastases
por: Symmans, W. Fraser, et al.
Publicado: (2008) -
Comparison of Multi-Label U-Net and Mask R-CNN for panoramic radiograph segmentation to detect periodontitis
por: Widyaningrum, Rini, et al.
Publicado: (2022) -
Fovea-UNet: detection and segmentation of lymph node metastases in colorectal cancer with deep learning
por: Liu, Yajiao, et al.
Publicado: (2023)