Cargando…
A Machine-Learning Tool Concurrently Models Single Omics and Phenome Data for Functional Subtyping and Personalized Cancer Medicine
SIMPLE SUMMARY: Tumours are heterogeneous that reflect variable patient prognosis and treatment responses (phenotypes). Since these variable phenotypes are outcomes of genomics, it is essential to integrate genome and phenome jointly. In this study, we report the development and application of a new...
Autores principales: | Nyamundanda, Gift, Eason, Katherine, Guinney, Justin, Lord, Christopher J., Sadanandam, Anguraj |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601761/ https://www.ncbi.nlm.nih.gov/pubmed/33007815 http://dx.doi.org/10.3390/cancers12102811 |
Ejemplares similares
-
polyClustR: defining communities of reconciled cancer subtypes with biological and prognostic significance
por: Eason, Katherine, et al.
Publicado: (2018) -
A Novel Statistical Method to Diagnose, Quantify and Correct Batch Effects in Genomic Studies
por: Nyamundanda, Gift, et al.
Publicado: (2017) -
Heterocellular gene signatures reveal luminal-A breast cancer heterogeneity and differential therapeutic responses
por: Poudel, Pawan, et al.
Publicado: (2019) -
Analytical Validation of Multiplex Biomarker Assay to Stratify Colorectal Cancer into Molecular Subtypes
por: Ragulan, Chanthirika, et al.
Publicado: (2019) -
The 2(nd) Conference and Workshop of The Cancer Genome Atlas (TCGA) in India: Towards Team Science for Multi-omics Cancer Research in South Asia
por: Dixit, Santosh, et al.
Publicado: (2021)