Cargando…
Mechanical Properties and Gamma-Ray Shielding Performance of 3D-Printed Poly-Ether-Ether-Ketone/Tungsten Composites
Nuclear energy provides enduring power to space vehicles, but special attention should be paid to radiation shielding during the development and use of nuclear energy systems. In this paper, novel composite materials containing poly-ether-ether-ketone (PEEK) as a substrate and different tungsten con...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601808/ https://www.ncbi.nlm.nih.gov/pubmed/33050304 http://dx.doi.org/10.3390/ma13204475 |
Sumario: | Nuclear energy provides enduring power to space vehicles, but special attention should be paid to radiation shielding during the development and use of nuclear energy systems. In this paper, novel composite materials containing poly-ether-ether-ketone (PEEK) as a substrate and different tungsten contents as a reinforcing agent were developed and tested as shielding for gamma-ray radiation. Shielding test bodies were quickly processed by fused deposition modeling (FDM) 3D printing, and their mechanical, shielding properties of composite materials were evaluated. The results revealed shielding materials with excellent mechanical properties which can further be improved by heat treatment. Under 0.45 MPa load, the heat deflection temperature of PEEK/tungsten (metal) composites was significantly lower than that of PEEK/boron carbide (non-metal) composites. The new shielding materials also demonstrated better shielding of low-energy (137)Cs than high-energy (60)Co. The gamma-ray shielding rates of test pieces shielding materials made of the same thickness changed exponentially with the tungsten content present in the composite materials. More tungsten led to a better shielding effect. At the same tungsten content, the gamma-ray shielding effect showed a proportional relationship with the thickness of the shielding test bodies, in which thicker test bodies induced better shielding effects. In sum, the integration of 3D printing in the mechanical design and manufacturing of shielding bodies is an effective and promising way for quick processing when considering diverse rays and complex environments. Lighter shielding bodies, at lower costs, can be achieved by structural design in limited space to maximize the material utilization rate and reduce waste. |
---|