Cargando…

Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways

SIMPLE SUMMARY: 5-ALA Fluorescence Guided Surgery aims at extending the boundaries of glioblastoma (GBM) resection. It is based on the use of a fluorescent dye, 5-aminolevulinic acid (5-ALA). Depending on the fluorescence levels, it is possible to distinguish the core of the tumor, the infiltrating...

Descripción completa

Detalles Bibliográficos
Autores principales: Manini, Ivana, Caponnetto, Federica, Dalla, Emiliano, Ius, Tamara, Pepa, Giuseppe Maria Della, Pegolo, Enrico, Bartolini, Anna, Rocca, Giuseppe La, Menna, Grazia, Loreto, Carla Di, Olivi, Alessandro, Skrap, Miran, Sabatino, Giovanni, Cesselli, Daniela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601979/
https://www.ncbi.nlm.nih.gov/pubmed/33066172
http://dx.doi.org/10.3390/cancers12102960
_version_ 1783603562320756736
author Manini, Ivana
Caponnetto, Federica
Dalla, Emiliano
Ius, Tamara
Pepa, Giuseppe Maria Della
Pegolo, Enrico
Bartolini, Anna
Rocca, Giuseppe La
Menna, Grazia
Loreto, Carla Di
Olivi, Alessandro
Skrap, Miran
Sabatino, Giovanni
Cesselli, Daniela
author_facet Manini, Ivana
Caponnetto, Federica
Dalla, Emiliano
Ius, Tamara
Pepa, Giuseppe Maria Della
Pegolo, Enrico
Bartolini, Anna
Rocca, Giuseppe La
Menna, Grazia
Loreto, Carla Di
Olivi, Alessandro
Skrap, Miran
Sabatino, Giovanni
Cesselli, Daniela
author_sort Manini, Ivana
collection PubMed
description SIMPLE SUMMARY: 5-ALA Fluorescence Guided Surgery aims at extending the boundaries of glioblastoma (GBM) resection. It is based on the use of a fluorescent dye, 5-aminolevulinic acid (5-ALA). Depending on the fluorescence levels, it is possible to distinguish the core of the tumor, the infiltrating borders and the healthy tissue. Since GBM progression is supported by tumor cells and their interaction with the surrounding microenvironment, we hypothesized that 5-ALA intensity could identify microenvironments with different tumor supporting properties. Taking advantage of glioma-associated stem cells; a human in vitro model of the glioma microenvironment, we demonstrate that all regions of the tumor support the tumor growth, but through different pathways. This study highlights the importance of understanding the TME to obtain key information on GBM biology and develop new therapeutic approaches. ABSTRACT: The glioblastoma microenvironment plays a substantial role in glioma biology. However, few studies have investigated its spatial heterogeneity. Exploiting 5-ALA Fluorescence Guided Surgery (FGS), we were able to distinguish between the tumor core (ALA+), infiltrating area (ALA-PALE) and healthy tissue (ALA−) of the glioblastoma, based on the level of accumulated fluorescence. The aim of this study was to investigate the properties of the microenvironments associated with these regions. For this purpose, we isolated glioma-associated stem cells (GASC), resident in the glioma microenvironment, from ALA+, ALA-PALE and ALA− samples and compared them in terms of growth kinetic, phenotype and for the expression of 84 genes associated with cancer inflammation and immunity. Differentially expressed genes were correlated with transcriptomic datasets from TCGA/GTEX. Our results show that GASC derived from the three distinct regions, despite a similar phenotype, were characterized by different transcriptomic profiles. Moreover, we identified a GASC-based genetic signature predictive of overall survival and disease-free survival. This signature, highly expressed in ALA+ GASC, was also well represented in ALA PALE GASC. 5-ALA FGS allowed to underline the heterogeneity of the glioma microenvironments. Deepening knowledge of these differences can contribute to develop new adjuvant therapies targeting the crosstalk between tumor and its supporting microenvironment.
format Online
Article
Text
id pubmed-7601979
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76019792020-11-01 Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways Manini, Ivana Caponnetto, Federica Dalla, Emiliano Ius, Tamara Pepa, Giuseppe Maria Della Pegolo, Enrico Bartolini, Anna Rocca, Giuseppe La Menna, Grazia Loreto, Carla Di Olivi, Alessandro Skrap, Miran Sabatino, Giovanni Cesselli, Daniela Cancers (Basel) Article SIMPLE SUMMARY: 5-ALA Fluorescence Guided Surgery aims at extending the boundaries of glioblastoma (GBM) resection. It is based on the use of a fluorescent dye, 5-aminolevulinic acid (5-ALA). Depending on the fluorescence levels, it is possible to distinguish the core of the tumor, the infiltrating borders and the healthy tissue. Since GBM progression is supported by tumor cells and their interaction with the surrounding microenvironment, we hypothesized that 5-ALA intensity could identify microenvironments with different tumor supporting properties. Taking advantage of glioma-associated stem cells; a human in vitro model of the glioma microenvironment, we demonstrate that all regions of the tumor support the tumor growth, but through different pathways. This study highlights the importance of understanding the TME to obtain key information on GBM biology and develop new therapeutic approaches. ABSTRACT: The glioblastoma microenvironment plays a substantial role in glioma biology. However, few studies have investigated its spatial heterogeneity. Exploiting 5-ALA Fluorescence Guided Surgery (FGS), we were able to distinguish between the tumor core (ALA+), infiltrating area (ALA-PALE) and healthy tissue (ALA−) of the glioblastoma, based on the level of accumulated fluorescence. The aim of this study was to investigate the properties of the microenvironments associated with these regions. For this purpose, we isolated glioma-associated stem cells (GASC), resident in the glioma microenvironment, from ALA+, ALA-PALE and ALA− samples and compared them in terms of growth kinetic, phenotype and for the expression of 84 genes associated with cancer inflammation and immunity. Differentially expressed genes were correlated with transcriptomic datasets from TCGA/GTEX. Our results show that GASC derived from the three distinct regions, despite a similar phenotype, were characterized by different transcriptomic profiles. Moreover, we identified a GASC-based genetic signature predictive of overall survival and disease-free survival. This signature, highly expressed in ALA+ GASC, was also well represented in ALA PALE GASC. 5-ALA FGS allowed to underline the heterogeneity of the glioma microenvironments. Deepening knowledge of these differences can contribute to develop new adjuvant therapies targeting the crosstalk between tumor and its supporting microenvironment. MDPI 2020-10-13 /pmc/articles/PMC7601979/ /pubmed/33066172 http://dx.doi.org/10.3390/cancers12102960 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Manini, Ivana
Caponnetto, Federica
Dalla, Emiliano
Ius, Tamara
Pepa, Giuseppe Maria Della
Pegolo, Enrico
Bartolini, Anna
Rocca, Giuseppe La
Menna, Grazia
Loreto, Carla Di
Olivi, Alessandro
Skrap, Miran
Sabatino, Giovanni
Cesselli, Daniela
Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways
title Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways
title_full Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways
title_fullStr Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways
title_full_unstemmed Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways
title_short Heterogeneity Matters: Different Regions of Glioblastoma Are Characterized by Distinctive Tumor-Supporting Pathways
title_sort heterogeneity matters: different regions of glioblastoma are characterized by distinctive tumor-supporting pathways
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601979/
https://www.ncbi.nlm.nih.gov/pubmed/33066172
http://dx.doi.org/10.3390/cancers12102960
work_keys_str_mv AT maniniivana heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT caponnettofederica heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT dallaemiliano heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT iustamara heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT pepagiuseppemariadella heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT pegoloenrico heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT bartolinianna heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT roccagiuseppela heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT mennagrazia heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT loretocarladi heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT olivialessandro heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT skrapmiran heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT sabatinogiovanni heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways
AT cessellidaniela heterogeneitymattersdifferentregionsofglioblastomaarecharacterizedbydistinctivetumorsupportingpathways