Cargando…
Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform
A literature curated dataset containing 24 distinct metal oxide (Me(x)O(y)) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for predic...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601995/ https://www.ncbi.nlm.nih.gov/pubmed/33066094 http://dx.doi.org/10.3390/nano10102017 |
_version_ | 1783603566277033984 |
---|---|
author | Papadiamantis, Anastasios G. Jänes, Jaak Voyiatzis, Evangelos Sikk, Lauri Burk, Jaanus Burk, Peeter Tsoumanis, Andreas Ha, My Kieu Yoon, Tae Hyun Valsami-Jones, Eugenia Lynch, Iseult Melagraki, Georgia Tämm, Kaido Afantitis, Antreas |
author_facet | Papadiamantis, Anastasios G. Jänes, Jaak Voyiatzis, Evangelos Sikk, Lauri Burk, Jaanus Burk, Peeter Tsoumanis, Andreas Ha, My Kieu Yoon, Tae Hyun Valsami-Jones, Eugenia Lynch, Iseult Melagraki, Georgia Tämm, Kaido Afantitis, Antreas |
author_sort | Papadiamantis, Anastasios G. |
collection | PubMed |
description | A literature curated dataset containing 24 distinct metal oxide (Me(x)O(y)) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for prediction of NP cytotoxicity. The model can be used to predict the cytotoxicity (cell viability) of Me(x)O(y) NPs based on the colorimetric lactate dehydrogenase (LDH) assay and the luminometric adenosine triphosphate (ATP) assay, both of which quantify irreversible cell membrane damage. Out of the 77 total descriptors used, 7 were identified as being significant for induction of cytotoxicity by Me(x)O(y) NPs. These were NP core size, hydrodynamic size, assay type, exposure dose, the energy of the Me(x)O(y) conduction band (E(C)), the coordination number of the metal atoms on the NP surface (Avg. C.N. Me atoms surface) and the average force vector surface normal component of all metal atoms (v⊥ Me atoms surface). The significance and effect of these descriptors is discussed to demonstrate their direct correlation with cytotoxicity. The produced model has been made publicly available by the Horizon 2020 (H2020) NanoSolveIT project and will be added to the project’s Integrated Approach to Testing and Assessment (IATA). |
format | Online Article Text |
id | pubmed-7601995 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76019952020-11-01 Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform Papadiamantis, Anastasios G. Jänes, Jaak Voyiatzis, Evangelos Sikk, Lauri Burk, Jaanus Burk, Peeter Tsoumanis, Andreas Ha, My Kieu Yoon, Tae Hyun Valsami-Jones, Eugenia Lynch, Iseult Melagraki, Georgia Tämm, Kaido Afantitis, Antreas Nanomaterials (Basel) Article A literature curated dataset containing 24 distinct metal oxide (Me(x)O(y)) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for prediction of NP cytotoxicity. The model can be used to predict the cytotoxicity (cell viability) of Me(x)O(y) NPs based on the colorimetric lactate dehydrogenase (LDH) assay and the luminometric adenosine triphosphate (ATP) assay, both of which quantify irreversible cell membrane damage. Out of the 77 total descriptors used, 7 were identified as being significant for induction of cytotoxicity by Me(x)O(y) NPs. These were NP core size, hydrodynamic size, assay type, exposure dose, the energy of the Me(x)O(y) conduction band (E(C)), the coordination number of the metal atoms on the NP surface (Avg. C.N. Me atoms surface) and the average force vector surface normal component of all metal atoms (v⊥ Me atoms surface). The significance and effect of these descriptors is discussed to demonstrate their direct correlation with cytotoxicity. The produced model has been made publicly available by the Horizon 2020 (H2020) NanoSolveIT project and will be added to the project’s Integrated Approach to Testing and Assessment (IATA). MDPI 2020-10-13 /pmc/articles/PMC7601995/ /pubmed/33066094 http://dx.doi.org/10.3390/nano10102017 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Papadiamantis, Anastasios G. Jänes, Jaak Voyiatzis, Evangelos Sikk, Lauri Burk, Jaanus Burk, Peeter Tsoumanis, Andreas Ha, My Kieu Yoon, Tae Hyun Valsami-Jones, Eugenia Lynch, Iseult Melagraki, Georgia Tämm, Kaido Afantitis, Antreas Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform |
title | Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform |
title_full | Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform |
title_fullStr | Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform |
title_full_unstemmed | Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform |
title_short | Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform |
title_sort | predicting cytotoxicity of metal oxide nanoparticles using isalos analytics platform |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601995/ https://www.ncbi.nlm.nih.gov/pubmed/33066094 http://dx.doi.org/10.3390/nano10102017 |
work_keys_str_mv | AT papadiamantisanastasiosg predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT janesjaak predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT voyiatzisevangelos predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT sikklauri predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT burkjaanus predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT burkpeeter predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT tsoumanisandreas predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT hamykieu predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT yoontaehyun predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT valsamijoneseugenia predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT lynchiseult predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT melagrakigeorgia predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT tammkaido predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform AT afantitisantreas predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform |