Cargando…

Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform

A literature curated dataset containing 24 distinct metal oxide (Me(x)O(y)) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for predic...

Descripción completa

Detalles Bibliográficos
Autores principales: Papadiamantis, Anastasios G., Jänes, Jaak, Voyiatzis, Evangelos, Sikk, Lauri, Burk, Jaanus, Burk, Peeter, Tsoumanis, Andreas, Ha, My Kieu, Yoon, Tae Hyun, Valsami-Jones, Eugenia, Lynch, Iseult, Melagraki, Georgia, Tämm, Kaido, Afantitis, Antreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601995/
https://www.ncbi.nlm.nih.gov/pubmed/33066094
http://dx.doi.org/10.3390/nano10102017
_version_ 1783603566277033984
author Papadiamantis, Anastasios G.
Jänes, Jaak
Voyiatzis, Evangelos
Sikk, Lauri
Burk, Jaanus
Burk, Peeter
Tsoumanis, Andreas
Ha, My Kieu
Yoon, Tae Hyun
Valsami-Jones, Eugenia
Lynch, Iseult
Melagraki, Georgia
Tämm, Kaido
Afantitis, Antreas
author_facet Papadiamantis, Anastasios G.
Jänes, Jaak
Voyiatzis, Evangelos
Sikk, Lauri
Burk, Jaanus
Burk, Peeter
Tsoumanis, Andreas
Ha, My Kieu
Yoon, Tae Hyun
Valsami-Jones, Eugenia
Lynch, Iseult
Melagraki, Georgia
Tämm, Kaido
Afantitis, Antreas
author_sort Papadiamantis, Anastasios G.
collection PubMed
description A literature curated dataset containing 24 distinct metal oxide (Me(x)O(y)) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for prediction of NP cytotoxicity. The model can be used to predict the cytotoxicity (cell viability) of Me(x)O(y) NPs based on the colorimetric lactate dehydrogenase (LDH) assay and the luminometric adenosine triphosphate (ATP) assay, both of which quantify irreversible cell membrane damage. Out of the 77 total descriptors used, 7 were identified as being significant for induction of cytotoxicity by Me(x)O(y) NPs. These were NP core size, hydrodynamic size, assay type, exposure dose, the energy of the Me(x)O(y) conduction band (E(C)), the coordination number of the metal atoms on the NP surface (Avg. C.N. Me atoms surface) and the average force vector surface normal component of all metal atoms (v⊥ Me atoms surface). The significance and effect of these descriptors is discussed to demonstrate their direct correlation with cytotoxicity. The produced model has been made publicly available by the Horizon 2020 (H2020) NanoSolveIT project and will be added to the project’s Integrated Approach to Testing and Assessment (IATA).
format Online
Article
Text
id pubmed-7601995
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76019952020-11-01 Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform Papadiamantis, Anastasios G. Jänes, Jaak Voyiatzis, Evangelos Sikk, Lauri Burk, Jaanus Burk, Peeter Tsoumanis, Andreas Ha, My Kieu Yoon, Tae Hyun Valsami-Jones, Eugenia Lynch, Iseult Melagraki, Georgia Tämm, Kaido Afantitis, Antreas Nanomaterials (Basel) Article A literature curated dataset containing 24 distinct metal oxide (Me(x)O(y)) nanoparticles (NPs), including 15 physicochemical, structural and assay-related descriptors, was enriched with 62 atomistic computational descriptors and exploited to produce a robust and validated in silico model for prediction of NP cytotoxicity. The model can be used to predict the cytotoxicity (cell viability) of Me(x)O(y) NPs based on the colorimetric lactate dehydrogenase (LDH) assay and the luminometric adenosine triphosphate (ATP) assay, both of which quantify irreversible cell membrane damage. Out of the 77 total descriptors used, 7 were identified as being significant for induction of cytotoxicity by Me(x)O(y) NPs. These were NP core size, hydrodynamic size, assay type, exposure dose, the energy of the Me(x)O(y) conduction band (E(C)), the coordination number of the metal atoms on the NP surface (Avg. C.N. Me atoms surface) and the average force vector surface normal component of all metal atoms (v⊥ Me atoms surface). The significance and effect of these descriptors is discussed to demonstrate their direct correlation with cytotoxicity. The produced model has been made publicly available by the Horizon 2020 (H2020) NanoSolveIT project and will be added to the project’s Integrated Approach to Testing and Assessment (IATA). MDPI 2020-10-13 /pmc/articles/PMC7601995/ /pubmed/33066094 http://dx.doi.org/10.3390/nano10102017 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Papadiamantis, Anastasios G.
Jänes, Jaak
Voyiatzis, Evangelos
Sikk, Lauri
Burk, Jaanus
Burk, Peeter
Tsoumanis, Andreas
Ha, My Kieu
Yoon, Tae Hyun
Valsami-Jones, Eugenia
Lynch, Iseult
Melagraki, Georgia
Tämm, Kaido
Afantitis, Antreas
Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform
title Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform
title_full Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform
title_fullStr Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform
title_full_unstemmed Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform
title_short Predicting Cytotoxicity of Metal Oxide Nanoparticles Using Isalos Analytics Platform
title_sort predicting cytotoxicity of metal oxide nanoparticles using isalos analytics platform
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601995/
https://www.ncbi.nlm.nih.gov/pubmed/33066094
http://dx.doi.org/10.3390/nano10102017
work_keys_str_mv AT papadiamantisanastasiosg predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT janesjaak predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT voyiatzisevangelos predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT sikklauri predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT burkjaanus predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT burkpeeter predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT tsoumanisandreas predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT hamykieu predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT yoontaehyun predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT valsamijoneseugenia predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT lynchiseult predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT melagrakigeorgia predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT tammkaido predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform
AT afantitisantreas predictingcytotoxicityofmetaloxidenanoparticlesusingisalosanalyticsplatform