Cargando…
Tool Wear Prediction Based on Artificial Neural Network during Aluminum Matrix Composite Milling (†)
This article deals with the phenomenon of tool wear prediction in face milling of aluminum matrix composite materials (AMC), class as hard-to-cut materials. Artificial neural networks (ANN) are one of the tools used to predict tool wear or surface roughness in machining. Model development is applica...
Autores principales: | Wiciak-Pikuła, Martyna, Felusiak-Czyryca, Agata, Twardowski, Paweł |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602040/ https://www.ncbi.nlm.nih.gov/pubmed/33066308 http://dx.doi.org/10.3390/s20205798 |
Ejemplares similares
-
Experimental Investigation of Surface Roughness in Milling of Duralcan(TM) Composite
por: Wiciak-Pikuła, Martyna, et al.
Publicado: (2021) -
Cutting Forces during Inconel 718 Orthogonal Turn-Milling
por: Felusiak-Czyryca, Agata, et al.
Publicado: (2021) -
Machine Learning Approaches for Monitoring of Tool Wear during Grey Cast-Iron Turning
por: Tabaszewski, Maciej, et al.
Publicado: (2022) -
Prediction of Tool Wear Using Artificial Neural Networks during Turning of Hardened Steel
por: Twardowski, Paweł, et al.
Publicado: (2019) -
Analysis of the Displacement of Thin-Walled Workpiece Using a High-Speed Camera during Peripheral Milling of Aluminum Alloys
por: Czyżycki, Jakub, et al.
Publicado: (2021)