Cargando…
Brightness Invariant Deep Spectral Super-Resolution
Spectral reconstruction from RGB or spectral super-resolution (SSR) offers a cheap alternative to otherwise costly and more complex spectral imaging devices. In recent years, deep learning based methods consistently achieved the best reconstruction quality in terms of spectral error metrics. However...
Autores principales: | Stiebel, Tarek, Merhof, Dorit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602104/ https://www.ncbi.nlm.nih.gov/pubmed/33066187 http://dx.doi.org/10.3390/s20205789 |
Ejemplares similares
-
Nanographenes: Ultrastable, Switchable, and Bright Probes for Super‐Resolution Microscopy
por: Liu, Xiaomin, et al.
Publicado: (2019) -
Spectral Super-Resolution for High Dynamic Range Images
por: Mikamoto, Yuki, et al.
Publicado: (2023) -
Joint Video Super-Resolution and Frame Interpolation via Permutation Invariance
por: Choi, Jinsoo, et al.
Publicado: (2023) -
LSTNet: A Reference-Based Learning Spectral Transformer Network for Spectral Super-Resolution
por: Yuan, Debao, et al.
Publicado: (2022) -
Spectrally PAINTing
a Single Chain Polymeric Nanoparticle
at Super-Resolution
por: Archontakis, Emmanouil, et al.
Publicado: (2022)