Cargando…

Hot Deformation Treatment of Grain-Modified Mg–Li Alloy

In this work, a systematic analysis of the hot deformation mechanism and a microstructure characterization of an as-cast single α-phase Mg–4.5 Li–1.5 Al alloy modified with 0.2% TiB addition, as a grain refiner, is presented. The optimized constitutive model and hot working terms of the Mg–Li alloy...

Descripción completa

Detalles Bibliográficos
Autores principales: Król, Mariusz, Snopiński, Przemysław, Pagáč, Marek, Hajnyš, Jiří, Petrů, Jana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602192/
https://www.ncbi.nlm.nih.gov/pubmed/33066408
http://dx.doi.org/10.3390/ma13204557
Descripción
Sumario:In this work, a systematic analysis of the hot deformation mechanism and a microstructure characterization of an as-cast single α-phase Mg–4.5 Li–1.5 Al alloy modified with 0.2% TiB addition, as a grain refiner, is presented. The optimized constitutive model and hot working terms of the Mg–Li alloy were also determined. The hot compression procedure of the Mg–4.5 Li–1.5 Al + 0.2 TiB alloy was performed using a DIL 805 A/D dilatometer at deformation temperatures from 250 °C to 400 °C and with strain rates of 0.01–1 s(−1). The processing map adapted from a dynamic material model (DMM) of the as-cast alloy was developed through the superposition of the established instability map and power dissipation map. By considering the processing maps and microstructure characteristics, the processing window for the Mg–Li alloy were determined to be at the deformation temperature of 590 K–670 K and with a strain rate range of 0.01–0.02 s(−1).