Cargando…
A Comparison of Classification Techniques to Predict Brain-Computer Interfaces Accuracy Using Classifier-Based Latency Estimation†
P300-based Brain-Computer Interface (BCI) performance is vulnerable to latency jitter. To investigate the role of latency jitter on BCI system performance, we proposed the classifier-based latency estimation (CBLE) method. In our previous study, CBLE was based on least-squares (LS) and stepwise line...
Autores principales: | Mowla, Md Rakibul, Gonzalez-Morales, Jesus D., Rico-Martinez, Jacob, Ulichnie, Daniel A., Thompson, David E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602195/ https://www.ncbi.nlm.nih.gov/pubmed/33066374 http://dx.doi.org/10.3390/brainsci10100734 |
Ejemplares similares
-
Hybrid Brain–Computer Interface Techniques for Improved Classification Accuracy and Increased Number of Commands: A Review
por: Hong, Keum-Shik, et al.
Publicado: (2017) -
Low-latency multi-threaded processing of neuronal signals for brain-computer interfaces
por: Fischer, Jörg, et al.
Publicado: (2014) -
Moving beyond threshold‐based dichotomous classification to improve the accuracy in classifying non‐responders
por: Bonafiglia, Jacob T., et al.
Publicado: (2018) -
Comparing Different Classifiers in Sensory Motor Brain Computer Interfaces
por: Bashashati, Hossein, et al.
Publicado: (2015) -
An EEG Classification-Based Method for Single-Trial N170 Latency Detection and Estimation
por: Zang, Siyuan, et al.
Publicado: (2022)