Cargando…

From Tumor Mutational Burden to Blood T Cell Receptor: Looking for the Best Predictive Biomarker in Lung Cancer Treated with Immunotherapy

SIMPLE SUMMARY: Immune control inhibitor drugs (anti-PD1/PD-L1/CTLA-4) (ICIs) are showing efficacy in the treatment of lung cancer. Currently the only biomarker with clinical utility for ICIs, such as the expression of PDL1, does not appear to be perfect or effective. Our working group is conducting...

Descripción completa

Detalles Bibliográficos
Autores principales: Sesma, Andrea, Pardo, Julián, Cruellas, Mara, Gálvez, Eva M., Gascón, Marta, Isla, Dolores, Martínez-Lostao, Luis, Ocáriz, Maitane, Paño, José Ramón, Quílez, Elisa, Ramírez, Ariel, Torres-Ramón, Irene, Yubero, Alfonso, Zapata, María, Lastra, Rodrigo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602200/
https://www.ncbi.nlm.nih.gov/pubmed/33066479
http://dx.doi.org/10.3390/cancers12102974
Descripción
Sumario:SIMPLE SUMMARY: Immune control inhibitor drugs (anti-PD1/PD-L1/CTLA-4) (ICIs) are showing efficacy in the treatment of lung cancer. Currently the only biomarker with clinical utility for ICIs, such as the expression of PDL1, does not appear to be perfect or effective. Our working group is conducting a pilot study in lung cancer patients receiving ICIs with the aim of analyze the factors that affect the sensitivity of the immunotherapy in lung Cancer. Tumor Mutational Burden (TMB) and the sequencing of the T Cell Receptor (TCR) repertoire in peripheral blood have been postulated as predictive biomarkers of efficacy of immunotherapy. The review focusses on the predictive value of TMB for clinical responses to ICIs and discusses its clinical need after a discussion of the limitations. TCR CDR3 beta analysis and parameters such as clonality and TCR convergence may be good alternatives. For the moment, the combination of biomarkers may be the optimal tool. ABSTRACT: Despite therapeutic advances, lung cancer (LC) is one of the leading causes of cancer morbidity and mortality worldwide. Recently, the treatment of advanced LC has experienced important changes in survival benefit due to immune checkpoint inhibitors (ICIs). However, overall response rates (ORR) remain low in unselected patients and a large proportion of patients undergo disease progression in the first weeks of treatment. Therefore, there is a need of biomarkers to identify patients who will benefit from ICIs. The programmed cell death ligand 1 (PD-L1) expression has been the first biomarker developed. However, its use as a robust predictive biomarker has been limited due to the variability of techniques used, with different antibodies and thresholds. In this context, tumor mutational burden (TMB) has emerged as an additional powerful biomarker based on the observation of successful response to ICIs in solid tumors with high TMB. TMB can be defined as the total number of nonsynonymous mutations per DNA megabases being a mechanism generating neoantigens conditioning the tumor immunogenicity and response to ICIs. However, the latest data provide conflicting results regarding its role as a biomarker. Moreover, considering the results of the recent data, the use of peripheral blood T cell receptor (TCR) repertoire could be a new predictive biomarker. This review summarises recent findings describing the clinical utility of TMB and TCRβ (TCRB) and concludes that immune, neontigen, and checkpoint targeted variables are required in combination for accurately identifying patients who most likely will benefit of ICIs.