Cargando…
Magnetically Tunable Liquid Crystal-Based Optical Diffraction Gratings
We present a theoretical analysis of optical diffractive properties of magnetically tunable optical transmission gratings composed of periodically assembled layers of a polymer and a ferromagnetic liquid crystal (LC). The orientational structure of the LC layers as a function of an applied magnetic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602225/ https://www.ncbi.nlm.nih.gov/pubmed/33066481 http://dx.doi.org/10.3390/polym12102355 |
Sumario: | We present a theoretical analysis of optical diffractive properties of magnetically tunable optical transmission gratings composed of periodically assembled layers of a polymer and a ferromagnetic liquid crystal (LC). The orientational structure of the LC layers as a function of an applied magnetic field is calculated by minimization of the Landau-de Gennes free energy for ferromagnetic LCs, which is performed numerically and also analytically by using the one-constant approximation and the approximations of the high and the low magnetic fields. Optical diffractive properties of the associated diffraction structure are calculated numerically in the framework of rigorous coupled-wave analysis (RCWA). The presented methodology provides a basis for designing new types of diffractive optical element based on ferromagnetic LCs and simulating their operation governed by the in-plane magnetic field. |
---|