Cargando…
Nanopharmaceuticals for Eye Administration: Sterilization, Depyrogenation and Clinical Applications
SIMPLE SUMMARY: Nanopharmaceuticals have revolutionized the way ophthalmic drugs are administered to overcome ocular delivery barriers and improve drug bioavailability. The design and production of an efficient ocular drug delivery system still remain a challenge. In this review, we discuss the ster...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602230/ https://www.ncbi.nlm.nih.gov/pubmed/33066555 http://dx.doi.org/10.3390/biology9100336 |
Sumario: | SIMPLE SUMMARY: Nanopharmaceuticals have revolutionized the way ophthalmic drugs are administered to overcome ocular delivery barriers and improve drug bioavailability. The design and production of an efficient ocular drug delivery system still remain a challenge. In this review, we discuss the sterilization and depyrogenation methods, commonly used for ophthalmic nanopharmaceuticals, and their clinical applications. ABSTRACT: As an immune-privileged target organ, the eyes have important superficial and internal barriers, protecting them from physical and chemical damage from exogenous and/or endogenous origins that would cause injury to visual acuity or even vision loss. These anatomic, physiological and histologic barriers are thus a challenge for drug access and entry into the eye. Novel therapeutic concepts are highly desirable for eye treatment. The design of an efficient ocular drug delivery system still remains a challenge. Although nanotechnology may offer the ability to detect and treat eye diseases, successful treatment approaches are still in demand. The growing interest in nanopharmaceuticals offers the opportunity to improve ophthalmic treatments. Besides their size, which needs to be critically monitored, nanopharmaceuticals for ophthalmic applications have to be produced under sterilized conditions. In this work, we have revised the different sterilization and depyrogenation methods for ophthalmic nanopharmaceuticals with their merits and drawbacks. The paper also describes clinical sterilization of drugs and the outcomes of inappropriate practices, while recent applications of nanopharmaceuticals for ocular drug delivery are also addressed. |
---|