Cargando…
An Adaptive Deep Learning Framework for Dynamic Image Classification in the Internet of Things Environment
In the modern era of digitization, the analysis in the Internet of Things (IoT) environment demands a brisk amalgamation of domains such as high-dimension (images) data sensing technologies, robust internet connection (4 G or 5 G) and dynamic (adaptive) deep learning approaches. This is required for...
Autores principales: | Jameel, Syed Muslim, Hashmani, Manzoor Ahmed, Rehman, Mobashar, Budiman, Arif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602278/ https://www.ncbi.nlm.nih.gov/pubmed/33066579 http://dx.doi.org/10.3390/s20205811 |
Ejemplares similares
-
Self-Adaptive Framework Based on MAPE Loop for Internet of Things †
por: Lee, Euijong, et al.
Publicado: (2019) -
Optimal ElGamal Encryption with Hybrid Deep-Learning-Based Classification on Secure Internet of Things Environment
por: Annamalai, Chinnappa, et al.
Publicado: (2023) -
Internet of Things Framework for Oxygen Saturation Monitoring in COVID-19 Environment
Publicado: (2021) -
Artificial intelligence-driven malware detection framework for internet of things environment
por: Alsubai, Shtwai, et al.
Publicado: (2023) -
Fuzzy Support Tensor Product Adaptive Image Classification for the Internet of Things
por: Shi, Zhongrong, et al.
Publicado: (2022)