Cargando…

Automated contouring and planning pipeline for hippocampal-avoidant whole-brain radiotherapy

BACKGROUND: Whole-brain radiotherapy (WBRT) remains an important treatment for over 200,000 cancer patients in the United States annually. Hippocampal-avoidant WBRT (HA-WBRT) reduces neurocognitive toxicity compared to standard WBRT, but HA-WBRT contouring and planning are more complex and time-cons...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Christine H., Cornell, Mariel, Moore, Kevin L., Karunamuni, Roshan, Seibert, Tyler M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602303/
https://www.ncbi.nlm.nih.gov/pubmed/33126894
http://dx.doi.org/10.1186/s13014-020-01689-y
Descripción
Sumario:BACKGROUND: Whole-brain radiotherapy (WBRT) remains an important treatment for over 200,000 cancer patients in the United States annually. Hippocampal-avoidant WBRT (HA-WBRT) reduces neurocognitive toxicity compared to standard WBRT, but HA-WBRT contouring and planning are more complex and time-consuming than standard WBRT. We designed and evaluated a workflow using commercially available artificial intelligence tools for automated hippocampal segmentation and treatment planning to efficiently generate clinically acceptable HA-WBRT radiotherapy plans. METHODS: We retrospectively identified 100 consecutive adult patients treated for brain metastases outside the hippocampal region. Each patient’s T1 post-contrast brain MRI was processed using NeuroQuant, an FDA-approved software that provides segmentations of brain structures in less than 8 min. Automated hippocampal segmentations were reviewed for accuracy, then converted to files compatible with a commercial treatment planning system, where hippocampal avoidance regions and planning target volumes (PTV) were generated. Other organs-at-risk (OARs) were previously contoured per clinical routine. A RapidPlan knowledge-based planning routine was applied for a prescription of 30 Gy in 10 fractions using volumetric modulated arc therapy (VMAT) delivery. Plans were evaluated based on NRG CC001 dose-volume objectives (Brown et al. in J Clin Oncol, 2020). RESULTS: Of the 100 cases, 99 (99%) had acceptable automated hippocampi segmentations without manual intervention. Knowledge-based planning was applied to all cases; the median processing time was 9 min 59 s (range 6:53–13:31). All plans met per-protocol dose-volume objectives for PTV per the NRG CC001 protocol. For comparison, only 65.5% of plans on NRG CC001 met PTV goals per protocol, with 26.1% within acceptable variation. In this study, 43 plans (43%) met OAR constraints, and the remaining 57 (57%) were within acceptable variation, compared to 42.5% and 48.3% on NRG CC001, respectively. No plans in this study had unacceptable dose to OARs, compared to 0.8% of manually generated plans from NRG CC001. 8.4% of plans from NRG CC001 were not scored or unable to be evaluated. CONCLUSIONS: An automated pipeline harnessing the efficiency of commercially available artificial intelligence tools can generate clinically acceptable VMAT HA-WBRT plans with minimal manual intervention. This process could improve clinical efficiency for a treatment established to improve patient outcomes over standard WBRT.