Cargando…
Statistical and Machine-Learning Analyses in Nutritional Genomics Studies
Nutritional compounds may have an influence on different OMICs levels, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics. The integration of OMICs data is challenging but may provide new knowledge to explain the mechanisms involved in the metabolism of nutr...
Autores principales: | Khorraminezhad, Leila, Leclercq, Mickael, Droit, Arnaud, Bilodeau, Jean-François, Rudkowska, Iwona |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602401/ https://www.ncbi.nlm.nih.gov/pubmed/33066636 http://dx.doi.org/10.3390/nu12103140 |
Ejemplares similares
-
Impact of Dairy Intake on Plasma F(2)-IsoProstane Profiles in Overweight Subjects with Hyperinsulinemia: A Randomized Crossover Trial
por: Khorraminezhad, Leila, et al.
Publicado: (2021) -
Industrial and Ruminant Trans-Fatty Acids-Enriched Diets Differentially Modulate the Microbiome and Fecal Metabolites in C57BL/6 Mice
por: Mohammadi, Farzad, et al.
Publicado: (2023) -
Machine Learning and Deep Learning Applications in Metagenomic Taxonomy and Functional Annotation
por: Mathieu, Alban, et al.
Publicado: (2022) -
Identification of the most important features of knee osteoarthritis structural progressors using machine learning methods
por: Jamshidi, Afshin, et al.
Publicado: (2020) -
BioDiscViz: A visualization support and consensus signature selector for BioDiscML results
por: Bouirdene, Sophiane, et al.
Publicado: (2023)